Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
Advertisement Remove all ads
Solution
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4`
`=>tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=tan^(-1)1`
`=>tan^(-1)((x-2)/(x-3))=tan^(-1)1-tan^(-1)((x+2)/(x+3))`
`=>tan^(-1)((x-2)/(x-3))=tan^(-1)(1-(x+2)/(x+3))/(1+(x+2)/(x+3))`
`=>tan^(-1)((x-2)/(x-3))=tan^(-1)(x+3-x-2)/(x+3+x+2)`
`=>tan^(-1)((x-2)/(x-3))=tan^(-1)1/(2x+5)`
`=>(x-2)/(x-3)=1/(2x+5)`
`=>(x-2)(2x+5)=x-3`
`=>2x^2-4x+5x-10=x-3`
`=>2x^2=7`
`=>x=+-sqrt(7/2)`
Concept: Inverse Trigonometric Functions (Simplification and Examples)
Is there an error in this question or solution?