Solve the following for x : tan^−1((x−2)/(x−3))+tan^−1((x+2)/(x+3))=π/4,|x|<1 - Mathematics

Advertisements
Advertisements

Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`

Advertisements

Solution

 

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4`

`=>tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=tan^(-1)1`

`=>tan^(-1)((x-2)/(x-3))=tan^(-1)1-tan^(-1)((x+2)/(x+3))`

`=>tan^(-1)((x-2)/(x-3))=tan^(-1)(1-(x+2)/(x+3))/(1+(x+2)/(x+3))`

`=>tan^(-1)((x-2)/(x-3))=tan^(-1)(x+3-x-2)/(x+3+x+2)`

`=>tan^(-1)((x-2)/(x-3))=tan^(-1)1/(2x+5)`

`=>(x-2)/(x-3)=1/(2x+5)`

`=>(x-2)(2x+5)=x-3`

`=>2x^2-4x+5x-10=x-3`

`=>2x^2=7`

`=>x=+-sqrt(7/2)`

  Is there an error in this question or solution?
2014-2015 (March) Patna Set 2

RELATED QUESTIONS

 

If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x

 

If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


Find the domain of `f(x)=cos^-1x+cosx.`


`sin^-1(sin4)`


`sin^-1(sin12)`


Evaluate the following:

`cos^-1{cos(-pi/4)}`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`tan^-1(tan  (9pi)/4)`


Evaluate the following:

`cot^-1{cot (-(8pi)/3)}`


Write the following in the simplest form:

`cot^-1  a/sqrt(x^2-a^2),|  x  | > a`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Evaluate:

`cosec{cot^-1(-12/5)}`


Evaluate:

`cos(tan^-1  3/4)`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x < 0


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


`tan^-1x+2cot^-1x=(2x)/3`


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Solve the following equation for x:

`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`


Sum the following series:

`tan^-1  1/3+tan^-1  2/9+tan^-1  4/33+...+tan^-1  (2^(n-1))/(1+2^(2n-1))`


`sin^-1  63/65=sin^-1  5/13+cos^-1  3/5`


Evaluate the following:

`sin(2tan^-1  2/3)+cos(tan^-1sqrt3)`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


If `sin^-1  (2a)/(1+a^2)+sin^-1  (2b)/(1+b^2)=2tan^-1x,` Prove that  `x=(a+b)/(1-ab).`


Solve the following equation for x:

`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`


If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.


Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]


Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]


If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.


Write the value of  \[\tan^{- 1} \left( \frac{1}{x} \right)\]  for x < 0 in terms of `cot^-1x`


sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]

 


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


Find the value of `sin^-1(cos((33π)/5))`.


Share
Notifications



      Forgot password?
Use app×