Advertisement Remove all ads

Solve the Following Simultaneous Equations. 2 X + 2 3 Y = 1 6 ; 3 X + 2 Y = 0 - Algebra

Solve the following simultaneous equations.
\[\frac{2}{x} + \frac{2}{3y} = \frac{1}{6} ; \frac{3}{x} + \frac{2}{y} = 0\]

Advertisement Remove all ads

Solution

\[\frac{2}{x} + \frac{2}{3y} = \frac{1}{6} ; \frac{3}{x} + \frac{2}{y} = 0\]
Let \[\frac{1}{x} = u\text{ and }\frac{1}{y} = v\] 
\[2u + \frac{2}{3}v = \frac{1}{6} \]
\[12u + 4v = 1 . . . . . \left( I \right)\]
\[3u + 2v = 0 . . . . . \left( II \right)\]
Multiply (II) with 2
\[6u + 4v = 0 . . . . . \left( III \right)\]
\[\left( I \right) - \left( III \right)\]
\[6u = 1\]
\[ \Rightarrow u = \frac{1}{6}\]
Putting the value of in II. 
\[3 \times \frac{1}{6} + 2v = 0\]
\[ \Rightarrow \frac{1}{2} + 2v = 0\]
\[ \Rightarrow v = \frac{- 1}{4}\]
\[\frac{1}{x} = u\]
\[ \Rightarrow x = 6\]
\[\frac{1}{y} = v\]
\[ \Rightarrow y = - 4\]
\[\left( x, y \right) = \left( 6, - 4 \right)\]
Concept: Graphical Method of Solution of a Pair of Linear Equations
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Balbharati Mathematics 1 Algebra 10th Standard SSC Maharashtra State Board
Chapter 1 Linear Equations in Two Variables
Problem Set 1 | Q 6.1 | Page 28
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×