Department of Pre-University Education, KarnatakaPUC Karnataka Science Class 11

# Solve the Following Quadratic Equation: X 2 − ( √ 2 + I ) X + √ 2 I = 0 - Mathematics

$x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0$

#### Solution

$x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2} i = 0$

$\text { Comparing the given equation with the general form } a x^2 + bx + c = 0, \text { we get }$

$a = 1, b = - \left( \sqrt{2} + i \right) \text { and } c = \sqrt{2}i$

$x = \frac{- b \pm \sqrt{b^2 - 4ac}}{2a}$

$\Rightarrow x = \frac{\left( \sqrt{2} + i \right) \pm \sqrt{\left( \sqrt{2} + i \right)^2 - 4\sqrt{2}i}}{2}$

$\Rightarrow x = \frac{\left( \sqrt{2} + i \right) \pm \sqrt{1 - 2\sqrt{2} i}}{2}$

$\Rightarrow x = \frac{\left( \sqrt{2} + i \right) \pm \sqrt{\left( \sqrt{2} \right)^2 - 1^2 - 2\sqrt{2} i}}{2}$

$\Rightarrow x = \frac{\left( \sqrt{2} + i \right) \pm \sqrt{\left( \sqrt{2} - i \right)^2}}{2}$

$\Rightarrow x = \frac{\left( \sqrt{2} + i \right) \pm \left( \sqrt{2} - i \right)}{2}$

$\Rightarrow x = \sqrt{2}, i$

$\text { So, the roots of the given quadratic equation are } \sqrt{2} \text { and } i .$

Is there an error in this question or solution?

#### APPEARS IN

RD Sharma Class 11 Mathematics Textbook