Sum
Solve the following equation.
`[sqrt( 4x + 1) + sqrt( x + 3 )]/[sqrt( 4x + 1 ) - sqrt( x+3 )]=4/1`
Advertisement Remove all ads
Solution
`[sqrt( 4x + 1) + sqrt( x + 3 )]/[sqrt( 4x + 1 ) - sqrt( x+3 )]=4/1`
Applying componendo and dividendo, we get
`{[sqrt( 4x + 1) + sqrt( x + 3 )] + [sqrt( 4x + 1 ) - sqrt( x+3 )]} /{[sqrt( 4x + 1) + sqrt( x + 3 )] - [sqrt( 4x + 1 ) - sqrt( x+3 )]}=4/1`
⇒ `(2sqrt[4x+1])/ (2sqrt[x + 3]) = 5/3`
⇒ `sqrt[4x+1]/sqrt[x + 3] = 5/3`
Squaring on both sides, we get
`(4x + 1)/(x +3) = (5/3)^2 = 25/9`
⇒ `36x +9 = 25x + 75`
⇒ `36x - 25x = 75 - 9`
⇒ `11x = 66`
⇒ `x = 6`
Thus, the solution of the given equation is x = 6.
Concept: Application of Properties of Equal Ratios
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads