Solve the following equation:
`4^(2x)=(root3 16)^(-6/y)=(sqrt8)^2`
Advertisement Remove all ads
Solution
`4^(2x)=(root3 16)^(-6/y)=(sqrt8)^2`
`rArr4^(2x)=(sqrt8)^2` and `(root3 16)^(-6/y)=(sqrt8)^2`
`rArr4^(2x)=(8^1/2xx2)` and `(16^(1/3xx-6/y))=(8^1/2xx2)`
`rArr4^(2x)=8` and `(16^(-2/y))=8`
`rArr2^(4x)=2^3` and `(2^(-8/y))=2^3`
`rArr4x=3` and `-8/y=3`
`rArrx=3/4` and `y=-8/3`
Concept: Laws of Exponents for Real Numbers
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads