Department of Pre-University Education, KarnatakaPUC Karnataka Science Class 11
Advertisement Remove all ads

Solve the Following Equation: 2 Sin 2 X + √ 3 Cos X + 1 = 0 - Mathematics

Sum

Solve the following equation:

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\]
Advertisement Remove all ads

Solution

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\]
\[ \Rightarrow 2 - 2 \cos^2 x + \sqrt{3} \cos x + 1 = 0\]
\[ \Rightarrow 2 \cos^2 x - \sqrt{3} \cos x - 3 = 0\]
\[ \Rightarrow 2 \cos^2 x - 2\sqrt{3} \cos x + \sqrt{3} \cos x - 3 = 0\]
\[ \Rightarrow 2 \cos x (\cos x - \sqrt{3}) + \sqrt{3} (\cos x - \sqrt{3}) = 0\]
\[ \Rightarrow (2 \cos x + \sqrt{3}) (\cos x - \sqrt{3}) = 0\]

⇒ \[(2 \cos x + \sqrt{3}) = 0\] or

\[(\cos x - \sqrt{3}) = 0\]
\[\cos x = \sqrt{3}\] is not possible.
 
\[\therefore 2 \cos x + \sqrt{3} = 0 \]
\[ \Rightarrow \cos x = - \frac{\sqrt{3}}{2} \]
\[ \Rightarrow \cos x = \cos \frac{5\pi}{6} \]
\[ \Rightarrow x = 2n\pi \pm \frac{5\pi}{6}, n \in\]
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 11 Trigonometric equations
Exercise 11.1 | Q 3.3 | Page 22
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×