# Solve the equation for x:sin^(−1)x+sin^(−1)(1−x)=cos^(−1)x - Mathematics

Solve the equation for x:sin1x+sin1(1x)=cos1x

#### Solution

We have,

sin1x+sin1(1x)=cos1x

sin^−1 x -cos^−1 x=-sin^−1 (1−x)

sin^−1 x -cos^−1 x=sin^−1 (x-1) ......................(1)   [because sin^(-1)(-x)=-sin^-1x]

Put sin^-1 x=theta and cos^-1 x= phi

sin theta=x and cos phi=x

then cos theta=sqrt(1-sin^2theta) and sin phi=sqrt(1-cos^2 phi)

cos theta=sqrt(1-x^2) and sin phi =sqrt(1-x^2)

Applying the formula:

sin(theta-phi)=sin theta cos phi-cos theta sin phi , we get

sin(theta-phi)=x.x-sqrt(1-x^2)sqrt(1-x^2)

sin(theta-phi)=x^2-(1-x^2)

sin(theta-phi)=x^2-1+x^2

sin(theta-phi)=2x^2-1

(theta-phi)=sin^-1(2x^2-1)

sin^-1x - cos^-1 x=sin^-1(2x^2-1).............(2)

From (1)  and  (2), we get

sin^-1 (2x^2-1)= sin^-1 (x-1)

2x^2-x=0

x(2x-1)=0

x=0 or 2x-1=0

x=0 or x=1/2

Concept: Inverse Trigonometric Functions (Simplification and Examples)
Is there an error in this question or solution?
2015-2016 (March) All India Set 2 C

Share