Sum
Solve the following equation and also check your result:
\[\frac{7y + 2}{5} = \frac{6y - 5}{11}\]
Advertisement Remove all ads
Solution
\[\frac{7y + 2}{5} = \frac{6y - 5}{11}\]
\[\text{ or }77y + 22 = 30y - 25\]
\[\text{ or }77y - 30y = - 25 - 22\]
\[\text{ or }47y = - 47\]
\[\text{ or }y = \frac{- 47}{47} = - 1\]
\[\text{ Verification: }\]
\[\text{ L . H . S . }= \frac{- 7 + 2}{5} = \frac{- 5}{5} = - 1\]
\[\text{ R . H . S . }= \frac{- 6 - 5}{11} = \frac{- 11}{11} = - 1\]
\[\text{ or }77y + 22 = 30y - 25\]
\[\text{ or }77y - 30y = - 25 - 22\]
\[\text{ or }47y = - 47\]
\[\text{ or }y = \frac{- 47}{47} = - 1\]
\[\text{ Verification: }\]
\[\text{ L . H . S . }= \frac{- 7 + 2}{5} = \frac{- 5}{5} = - 1\]
\[\text{ R . H . S . }= \frac{- 6 - 5}{11} = \frac{- 11}{11} = - 1\]
∴ L.H.S.H.S. for y = -1
Concept: Linear Equation in One Variable
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads