Advertisement Remove all ads

Solve ( D 3 + D 2 + D + 1 ) Y = Sin 2 X - Applied Mathematics 2

Advertisement Remove all ads
Advertisement Remove all ads
Sum

Solve `(D^3+D^2+D+1)y=sin^2x`

Advertisement Remove all ads

Solution

`(D^3+D^2+D+1)y=sin^2x`

For complementary solution ,
𝒇(𝑫)=𝟎
`therefore (D^3+D^2+D+1)=0`
Roots are : D = -1 , +i , -i
The complementary solution of given diff eqn is ,
`y_c=c_1cosx+c_2sinx+c_3e^(-x)`
For complementary solution ,

`y_p=1/(f(D))x=1/(D^3+D^2+D+1)sin^2x=1/(2(D^3+D^2+D+1))(1-cos2x)`

`=1/(2(D^3+D^2+D+1))e^(0x)-1/(2(D^3+D^2+D+1))cos2x`

`=1/2-1/2xx1/(-D-4+d+1)cos2x`

`=1/2+1/6 1/(D+1)cos2x`

`=1/2+1/6 1/(D+1) (D-1)/(D-1)cos2x`

`=1/2+1/6 (D-1)/(D^2-1)cos2x`

`=1/2+1/6(-2sin2x-cos2x)/(-4-1)cos2x`

`y_p=1/2+1/30(2sin2x-cos2x)`

The general solution of given diff. eqn is given by,

`y_g=y_c+y_p=c_1cosx+c_2sinx+c_3e^(-x)+1/2+1/30(2sin2x+cos2x)`

Concept: Linear Differential Equation with Constant Coefficient‐ Complementary Function
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×