Advertisement Remove all ads

Solve ( D 2 + 2 ) Y = E X Cos X + X 2 E 3 X - Applied Mathematics 2

Sum

Solve `(D^2+2)y=e^xcosx+x^2e^(3x)`

Advertisement Remove all ads

Solution

`(D^2+2)y=e^xcosx+x^2e^(3x)`
For complementary solution,

๐’‡(๐‘ซ)=๐ŸŽ

`therefore(D^2+2)=0`
Roots are : D = √๐Ÿ๐’Š ,−√๐Ÿ๐’Š

Roots of given diff. eqn are complex.
The complementary solution of given diff. eqn is given by,

`therefore y_c=c_1cossqrt(2x)+c_2sinsqrt(2x)`
For particular integral ,

`y_p=1/(f(D))x=1/(D^2+1)e^xcosx+1/(D^2+1)x^2e^(3x)`

`=e^x1/((D+1)^2+1)cosx+1/(D^2+1)x^2e^(3x)`

`=e^x1/(D^2+2D+3)cosx+e^(3x)1/((D+3)^2+2)x^2`

`=e^x1/2(D-1)/(D^2-1)cosx+e^(3x)1/(D^2+6D+11)x^2`

`=e^x1/4(sinxcosx)+e^(3x)/11[1+(6D+D^2)/11]^(-1)x^2`

`=e^x1/4(sinxcosx)+e^(3x)/11[1+(6D+D^2)/11+(36D^2)/121+..]x^2`

`therefore y_p=e^x1/4(sinx+cosx)+e^(3x)/11[x^2-(12x)/11+50/121]`

`y_g=y_c+y_p=c_1cossqrt(2x)+c_2sinsqrt(2x)+e^x1/4(sinx+cosx)+e^(3x)/11[x^2-(12x)/11+50/121]`

Concept: Linear Differential Equation with Constant Coefficientโ€ Complementary Function
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×