Karnataka Board PUCPUC Science Class 11

Solve: 12x < 50, When X ∈ Z - Mathematics

Advertisements
Advertisements

Solve: 12x < 50, when  x ∈ Z 

Advertisements

Solution

\[\text{ We have }, 12x < 50\]
\[ \Rightarrow x < \frac{50}{12} \left[ \text{ Dividing both the sides by } 12 \right]\]
\[ \Rightarrow x < \frac{25}{6}\]

\[ x \in Z\]
\[\text{ Then, the solution of the given inequation is } \left\{ . . . . . . . . . . - 3, - 2, - 1, 0, 1, 2, 3, 4 \right\} . \]

  Is there an error in this question or solution?
Chapter 15: Linear Inequations - Exercise 15.1 [Page 10]

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 15 Linear Inequations
Exercise 15.1 | Q 1.2 | Page 10

RELATED QUESTIONS

Solve: 4x − 2 < 8, when x ∈ N 


3x − 7 > x + 1 


\[2\left( 3 - x \right) \geq \frac{x}{5} + 4\]


\[\frac{3x - 2}{5} \leq \frac{4x - 3}{2}\] 


−(x − 3) + 4 < 5 − 2x


\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]


\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]


\[\frac{2x + 3}{5} - 2 < \frac{3\left( x - 2 \right)}{5}\]


\[\frac{1}{x - 1} \leq 2\]


\[\frac{x}{x - 5} > \frac{1}{2}\] 


Solve each of the following system of equations in R. 

2x − 3 < 7, 2x > −4 


Solve each of the following system of equations in R.

5x − 1 < 24, 5x + 1 > −24 


Solve each of the following system of equations in R. 

3x − 1 ≥ 5, x + 2 > −1 


Solve each of the following system of equations in R. 

 x + 5 > 2(x + 1), 2 − x < 3 (x + 2) 


Solve each of the following system of equations in R. 

\[\frac{2x - 3}{4} - 2 \geq \frac{4x}{3} - 6, 2\left( 2x + 3 \right) < 6\left( x - 2 \right) + 10\]


Solve each of the following system of equations in R. 

\[\frac{7x - 1}{2} < - 3, \frac{3x + 8}{5} + 11 < 0\]


Solve each of the following system of equations in R. 

\[\frac{2x + 1}{7x - 1} > 5, \frac{x + 7}{x - 8} > 2\] 


Solve each of the following system of equations in R.

 10 ≤ −5 (x − 2) < 20 


Solve  

\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\] 


Solve  \[\frac{\left| x + 2 \right| - x}{x} < 2\] 


Solve 

\[\left| \frac{2x - 1}{x - 1} \right| > 2\] 


Solve  \[\left| x - 1 \right| + \left| x - 2 \right| + \left| x - 3 \right| \geq 6\]


Solve  \[\frac{1}{\left| x \right| - 3} \leq \frac{1}{2}\]


Solve  \[\left| 3 - 4x \right| \geq 9\]


Mark the correct alternative in each of the following: 

If − 3x\[+\]17\[< -\]13, then


Mark the correct alternative in each of the following:
Given that xy and are real numbers and x\[<\]yb\[>\]0, then

 


Mark the correct alternative in each of the following:
If and are real numbers such that a\[>\]0 and \\left| x \right|\]\[>\]a, then

 


Mark the correct alternative in each of the following:

\[\left| x - 1 \right|\]\[>\]5, then 


Mark the correct alternative in each of the following:
If \[\left| x + 2 \right|\]\[\leq\]9, then


Mark the correct alternative in each of the following:
The solution set of the inequation \[\left| x + 2 \right|\]\[\leq\]5 is 


If –x ≤ –4, then 2x ______ 8.


If a < b and c < 0, then `a/c` ______ `b/c`.


Solve for x, the inequality given below.

`1/(|x| - 3) ≤ 1/2`


In drilling world’s deepest hole it was found that the temperature T in degree celcius, x km below the earth’s surface was given by T = 30 + 25(x – 3), 3 ≤ x ≤ 15. At what depth will the temperature be between 155°C and 205°C?


If x is a real number and |x| < 3, then ______.


x and b are real numbers. If b > 0 and |x| > b, then ______.


If x > y and z < 0, then – xz ______ – yz.


If p > 0 and q < 0, then p – q ______ p.


Share
Notifications



      Forgot password?
Use app×