Karnataka Board PUCPUC Science Class 11

Solve 1 | X | − 3 ≤ 1 2 - Mathematics

Advertisements
Advertisements

Solve  \[\frac{1}{\left| x \right| - 3} \leq \frac{1}{2}\]

Advertisements

Solution

\[\text{ As }, \frac{1}{\left| x \right| - 3} \leq \frac{1}{2}\]
\[ \Rightarrow \frac{1}{\left| x \right| - 3} - \frac{1}{2} \leq 0\]
\[ \Rightarrow \frac{2 - \left( \left| x \right| - 3 \right)}{2\left( \left| x \right| - 3 \right)} \leq 0\]
\[ \Rightarrow \frac{2 - \left| x \right| + 3}{2\left( \left| x \right| - 3 \right)} \leq 0\]
\[ \Rightarrow \frac{5 - \left| x \right|}{\left| x \right| - 3} \leq 0\]
\[\text{ Case I: When } x \geq 0, \left| x \right| = x, \]
\[\frac{5 - x}{x - 3} \leq 0\]
\[ \Rightarrow \left( 5 - x \leq 0 \text{ and } x - 3 > 0 \right) \text{ or } \left( 5 - x \geq 0 \text{ and } x - 3 < 0 \right)\]
\[ \Rightarrow \left( x \geq 5 \text{ and } x > 3 \right) \text{ or } \left( x \leq 5 \text{ and } x < 3 \right)\]
\[ \Rightarrow x \geq 5 or x < 3\]
\[ \Rightarrow x \in \left( 0, 3 \right) \cup [5, \infty )\]
\[\text{ Case II: When } x < 0, \left| x \right| = - x, \]
\[\frac{5 + x}{- x - 3} \leq 0\]
\[ \Rightarrow \frac{x + 5}{x + 3} \geq 0\]
\[ \Rightarrow \left( x + 5 > 0 \text{ and } x + 3 > 0 \right) or \left( x + 5 < 0 \text{ and } x + 3 < 0 \right)\]
\[ \Rightarrow \left( x > - 5 \text{ and } x > - 3 \right) \text{ or } \left( x < - 5 \text{ and } x < - 3 \right)\]
\[ \Rightarrow x > - 3 \text{ or } x < - 5\]
\[ \Rightarrow x \in \left( - \infty , - 5 \right) \cup \left( - 3, \infty \right)\]
\[\text{ So, from both the cases, we get }\]
\[x \in \left( - \infty , - 5 \right) \cup \left( - 3, \infty \right) \cup \left( 0, 3 \right) \cup [5, \infty )\]
\[ \therefore x \in ( - \infty , - 5] \cup \left( - 3, 3 \right) \cup [5, \infty )\]

  Is there an error in this question or solution?
Chapter 15: Linear Inequations - Exercise 15.3 [Page 22]

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 15 Linear Inequations
Exercise 15.3 | Q 10 | Page 22

RELATED QUESTIONS

Solve: 12x < 50, when x ∈ R 


Solve: −4x > 30, when  x ∈ R 


3x − 7 > x + 1 


x + 5 > 4x − 10 


3x + 9 ≥ −x + 19 


\[\frac{4x + 3}{2x - 5} < 6\] 


\[\frac{5x - 6}{x + 6} < 1\]


\[\frac{5x + 8}{4 - x} < 2\]


\[\frac{7x - 5}{8x + 3} > 4\]


Solve each of the following system of equations in R.

1. x + 3 > 0, 2x < 14 


Solve each of the following system of equations in R. 

 4x − 1 ≤ 0, 3 − 4x < 0 


Solve each of the following system of equations in R. 

\[0 < \frac{- x}{2} < 3\] 


Solve each of the following system of equations in R.

 10 ≤ −5 (x − 2) < 20 


Solve  

\[\left| 4 - x \right| + 1 < 3\] 


Solve  \[\frac{\left| x - 2 \right|}{x - 2} > 0\] 


Solve  \[\frac{\left| x + 2 \right| - x}{x} < 2\] 


Solve 

\[\left| \frac{2x - 1}{x - 1} \right| > 2\] 


Solve  \[\left| 3 - 4x \right| \geq 9\]


Mark the correct alternative in each of the following:
Given that xy and are real numbers and x\[<\]yb\[>\]0, then

 


Mark the correct alternative in each of the following:
If and are real numbers such that a\[>\]0 and \\left| x \right|\]\[>\]a, then

 


Mark the correct alternative in each of the following:

\[\left| x - 1 \right|\]\[>\]5, then 


Mark the correct alternative in each of the following:
The inequality representing the following graph is 


Mark the correct alternative in each of the following:
If  \[\frac{\left| x - 2 \right|}{x - 2}\]\[\geq\] then


Solve `(x - 2)/(x + 5) > 2`.


Solve for x, `(|x + 3| + x)/(x + 2) > 1`.


The length of a rectangle is three times the breadth. If the minimum perimeter of the rectangle is 160 cm, then ______.


If |x + 3| ≥ 10, then ______.


If x ≥ –3, then x + 5 ______ 2.


If `1/(x - 2) < 0`, then x ______ 2.


If a < b and c < 0, then `a/c` ______ `b/c`.


If |x − 1| ≤ 2, then –1 ______ x ______ 3


If |3x – 7| > 2, then x ______ `5/3` or x ______ 3.


If p > 0 and q < 0, then p + q ______ p.


Solve for x, the inequality given below.

4x + 3 ≥ 2x + 17, 3x – 5 < –2


State which of the following statement is True or False.

If xy < 0, then x < 0 and y < 0


State which of the following statement is True or False.

If x < –5 and x < –2, then x ∈ (–∞, –5)


If x > y and z < 0, then – xz ______ – yz.


Share
Notifications



      Forgot password?
Use app×