Solve 1 ≤ | X − 2 | ≤ 3 - Mathematics

Advertisements
Advertisements

Solve \[1 \leq \left| x - 2 \right| \leq 3\] 

Advertisements

Solution

\[\text{ As }, 1 \leq \left| x - 2 \right| \leq 3\]
\[ \Rightarrow \left| x - 2 \right| \geq 1 \text{ and } \left| x - 2 \right| \leq 3\]
\[ \Rightarrow \left( \left( x - 2 \right) \leq - 1 \text{ or } \left( x - 2 \right) \geq 1 \right) \text{ and } \left( - 3 \leq \left( x - 2 \right) \leq 3 \right) \left( As, \left| x \right| \geq a \Rightarrow x \leq - a or x \geq a; \text{ and } \left| x \right| \leq a \Rightarrow - a \leq x \leq a \right)\]
\[ \Rightarrow \left( x \leq 1 \text{ or } x \geq 3 \right) \text{ and } \left( - 3 + 2 \leq x \leq 3 + 2 \right)\]
\[ \Rightarrow \left( x \leq 1 or x \geq 3 \right) \text{ and } \left( - 1 \leq x \leq 5 \right)\]
\[ \Rightarrow x \in ( - \infty , 1] \cup [3, \infty ) \text{ and } x \in \left[ - 1, 5 \right]\]
\[ \therefore x \in \left[ - 1, 1 \right] \cup \left[ 3, 5 \right]\]

  Is there an error in this question or solution?
Chapter 15: Linear Inequations - Exercise 15.3 [Page 22]

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 15 Linear Inequations
Exercise 15.3 | Q 12 | Page 22

RELATED QUESTIONS

Solve: −4x > 30, when x ∈ N 


Solve: 4x − 2 < 8, when x ∈ R 


Solve: 4x − 2 < 8, when x ∈ Z 


\[\frac{3x - 2}{5} \leq \frac{4x - 3}{2}\] 


\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]


\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]


\[\frac{5 - 2x}{3} < \frac{x}{6} - 5\] 


\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]


\[\frac{2x + 3}{5} - 2 < \frac{3\left( x - 2 \right)}{5}\]


\[\frac{3}{x - 2} < 1\]


\[\frac{5x - 6}{x + 6} < 1\]


Solve each of the following system of equations in R.

1. x + 3 > 0, 2x < 14 


Solve each of the following system of equations in R.

x − 2 > 0, 3x < 18 


Solve each of the following system of equations in R. 

2x − 3 < 7, 2x > −4 


Solve each of the following system of equations in R. 

2x + 5 ≤ 0, x − 3 ≤ 0 


Solve each of the following system of equations in R.

5x − 1 < 24, 5x + 1 > −24 


Solve each of the following system of equations in R.

11 − 5x > −4, 4x + 13 ≤ −11 


Solve each of the following system of equations in R. 

\[\frac{2x - 3}{4} - 2 \geq \frac{4x}{3} - 6, 2\left( 2x + 3 \right) < 6\left( x - 2 \right) + 10\]


Solve each of the following system of equations in R. 

\[\frac{7x - 1}{2} < - 3, \frac{3x + 8}{5} + 11 < 0\]


Solve each of the following system of equations in R. 

20. −5 < 2x − 3 < 5


Solve  

\[\left| \frac{3x - 4}{2} \right| \leq \frac{5}{12}\] 


Write the solution set of the inequation 

\[x + \frac{1}{x} \geq 2\] 


Mark the correct alternative in each of the following: 

If − 3x\[+\]17\[< -\]13, then


Mark the correct alternative in each of the following:
If is a real number and  \[\left| x \right|\]\[<\]5, then


Mark the correct alternative in each of the following:
The inequality representing the following graph is 


Mark the correct alternative in each of the following:
The linear inequality representing the solution set given in


Solve the inequality, 3x – 5 < x + 7, when x is a real number.


If `|x - 2|/(x - 2) ≥ 0`, then ______.


The length of a rectangle is three times the breadth. If the minimum perimeter of the rectangle is 160 cm, then ______.


If |x − 1| ≤ 2, then –1 ______ x ______ 3


If |3x – 7| > 2, then x ______ `5/3` or x ______ 3.


Solve for x, the inequality given below.

|x − 1| ≤ 5, |x| ≥ 2


A solution is to be kept between 40°C and 45°C. What is the range of temperature in degree fahrenheit, if the conversion formula is F = `9/5` C + 32?


If x is a real number and |x| < 3, then ______.


State which of the following statement is True or False.

If xy < 0, then x < 0 and y < 0


If x < –5 and x > 2, then x ∈ (– 5, 2)


If – 4x ≥ 12, then x ______ – 3.


If – 2x + 1 ≥ 9, then x ______ – 4.


Share
Notifications



      Forgot password?
Use app×