Sum
Solve `1/p + 1/q + 1/x = 1/(x + p + q)`
Advertisement Remove all ads
Solution
`1/p + 1/q + 1/x = 1/(x + p + q)`
`=> 1/p + 1/q + 1/x - 1/(x + p + 1) = 0`
`=> ((q + p)[1/(pq) + 1/(x^2 + px + qx)] = 0`
`=> (p + q) [(x^2 + px + qx + pq)/(pq(x^2 + px + qx))] = 0`
`=> x^2 + px + qx + pq = 0`
`=> x(x + p) + q(x + p) = 0`
`=> (x + p)(x + q) = 0`
=> x = -p and x = -q
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads