Advertisement Remove all ads

Solve 1/P + 1/Q + 1/X = 1/(X + P + Q) - Mathematics

Sum

Solve `1/p + 1/q + 1/x = 1/(x + p + q)`

Advertisement Remove all ads

Solution

`1/p + 1/q + 1/x = 1/(x + p + q)`

`=> 1/p + 1/q + 1/x - 1/(x + p + 1) = 0`

`=> ((q + p)[1/(pq) + 1/(x^2 + px + qx)] = 0`

`=> (p + q) [(x^2 + px + qx + pq)/(pq(x^2 + px + qx))] = 0`

`=> x^2 + px + qx + pq = 0`

`=> x(x + p) + q(x + p) = 0`

`=> (x + p)(x + q) = 0`

=> x = -p and x = -q

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Selina Concise Maths Class 10 ICSE
Chapter 5 Quadratic Equations
Exercise 5 (E) | Q 16 | Page 67
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×