Advertisement Remove all ads

Solve : ( 1 + Log X . Y ) D X + ( 1 + X Y ) Dy=0 - Applied Mathematics 2

Sum

Solve : `(1+log x.y)dx +(1+x/y)`dy=0

Advertisement Remove all ads

Solution

Compare given eqn with Mdx+Ndy=0

∴ M = (1+log x.y)               `thereforeN=1+x/y`

`(delM)/(dely)=1/(xy)x=1/y`    `delN)/(delx)=1/y`

`(delM)/(dely)=(delN)/(delx)`

Hence the given differential eqn is exact.
The solution of exact differential eqn is given by,

`intMdx+int(N-del/(dely)intMdx)dy=c`      .....................(1)

`intMdx=int(1+logxy)dx=x+logxy.x-x=x.logxy`

`del/(dely)intMdx=x/y`

`int(N-del/delyintMdx)dy=int(1+x/y-x/y)dy=y`

From eqn (1), the solution of given differential eqn is ,

x.log xy+y = c

Concept: Exact Differential Equations
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×