Share

Books Shortlist

# Solve the Following Quadratic Equations by Factorization: - CBSE Class 10 - Mathematics

ConceptSolutions of Quadratic Equations by Factorization

#### Question

Solve the following quadratic equations by factorization: $\frac{1}{2a + b + 2x} = \frac{1}{2a} + \frac{1}{b} + \frac{1}{2x}$

#### Solution

$\frac{1}{2a + b + 2x} = \frac{1}{2a} + \frac{1}{b} + \frac{1}{2x}$

$\Rightarrow \frac{1}{2a + b + 2x} - \frac{1}{2a} = \frac{1}{b} + \frac{1}{2x}$

$\Rightarrow \frac{2a - \left( 2a + b + 2x \right)}{\left( 2a + b + 2x \right)\left( 2a \right)} = \frac{2x + b}{2bx}$

$\Rightarrow \frac{- b - 2x}{4 a^2 + 2ab + 4ax} = \frac{2x + b}{2bx}$

$\Rightarrow \frac{- 1\left( 2x + b \right)}{4 a^2 + 2ab + 4ax} = \frac{2x + b}{2bx}$

$\Rightarrow - 2bx\left( 2x + b \right) = \left( 4 a^2 + 2ab + 4ax \right)\left( 2x + b \right)$

$\Rightarrow \left( 4 a^2 + 2ab + 4ax \right)\left( 2x + b \right) + 2bx\left( 2x + b \right) = 0$

$\Rightarrow \left( 2x + b \right)\left( 4 a^2 + 2ab + 4ax + 2bx \right) = 0$

$\Rightarrow 2x + b = 0 \text { or } 4 a^2 + 2ab + \left( 4a + 2b \right)x = 0$

$\Rightarrow x = - \frac{b}{2} \text { or } x = - \frac{4 a^2 + 2ab}{4a + 2b}$

$\Rightarrow x = - \frac{b}{2} \text { or } x = - \frac{a\left( 4a + 2b \right)}{4a + 2b}$

$\Rightarrow x = - \frac{b}{2} \text { or } x = - a$

Hence, the factors are $- a$ and $- \frac{b}{2}$.

Is there an error in this question or solution?

#### APPEARS IN

Solution Solve the Following Quadratic Equations by Factorization: Concept: Solutions of Quadratic Equations by Factorization.
S