Share

Books Shortlist

# Solve the Following Quadratic Equations by Factorization: - CBSE Class 10 - Mathematics

ConceptSolutions of Quadratic Equations by Factorization

#### Question

Solve the following quadratic equations by factorization: $\frac{3}{x + 1} + \frac{4}{x - 1} = \frac{29}{4x - 1}; x \neq 1, - 1, \frac{1}{4}$

#### Solution

$\frac{3}{x + 1} + \frac{4}{x - 1} = \frac{29}{4x - 1}$

$\Rightarrow \frac{3\left( x - 1 \right) + 4\left( x + 1 \right)}{\left( x + 1 \right)\left( x - 1 \right)} = \frac{29}{4x - 1}$

$\Rightarrow \frac{3x - 3 + 4x + 4}{x^2 - 1} = \frac{29}{4x - 1}$

$\Rightarrow \frac{7x + 1}{x^2 - 1} = \frac{29}{4x - 1}$

$\Rightarrow \left( 7x + 1 \right)\left( 4x - 1 \right) = 29\left( x^2 - 1 \right)$

$\Rightarrow 28 x^2 - 7x + 4x - 1 = 29 x^2 - 29$

$\Rightarrow 29 x^2 - 28 x^2 + 3x - 28 = 0$

$\Rightarrow x^2 + 3x - 28 = 0$

$\Rightarrow x^2 + 7x - 4x - 28 = 0$

$\Rightarrow x(x + 7) - 4(x + 7) = 0$

$\Rightarrow (x - 4)(x + 7) = 0$

$\Rightarrow x - 4 = 0 \text { or } x + 7 = 0$

$\Rightarrow x = 4 \text { or } x = - 7$

Hence, the factors are 4 and −7.

Is there an error in this question or solution?

#### APPEARS IN

Solution Solve the Following Quadratic Equations by Factorization: Concept: Solutions of Quadratic Equations by Factorization.
S