Share
Notifications

View all notifications
Advertisement

Solve the Following Quadratic Equations by Factorization: - Mathematics

Login
Create free account


      Forgot password?

Question

Solve the following quadratic equations by factorization:

\[9 x^2 - 6 b^2 x - \left( a^4 - b^4 \right) = 0\]

Solution

\[9 x^2 - 6 b^2 x - \left( a^4 - b^4 \right) = 0\]

\[ \Rightarrow 9 x^2 - 6 b^2 x - \left( a^2 - b^2 \right)\left( a^2 + b^2 \right) = 0\]

\[ \Rightarrow 9 x^2 + 3( a^2 - b^2 )x - 3\left( a^2 + b^2 \right)x - \left( a^2 - b^2 \right)\left( a^2 + b^2 \right) = 0\]

\[ \Rightarrow 3x\left[ 3x + \left( a^2 - b^2 \right) \right] - \left( a^2 + b^2 \right)\left[ 3x + \left( a^2 - b^2 \right) \right] = 0\]

\[ \Rightarrow \left[ 3x - \left( a^2 + b^2 \right) \right]\left[ 3x + \left( a^2 - b^2 \right) \right] = 0\]

\[ \Rightarrow 3x - \left( a^2 + b^2 \right) = 0 or 3x + \left( a^2 - b^2 \right) = 0\]

\[ \Rightarrow x = \frac{a^2 + b^2}{3} \text { or }x = - \frac{a^2 - b^2}{3}\]

\[ \Rightarrow x = \frac{a^2 + b^2}{3} \text { or } x = \frac{b^2 - a^2}{3}\]

Hence, the factors are \[\frac{a^2 + b^2}{3}\] and \[\frac{b^2 - a^2}{3}\].

  Is there an error in this question or solution?
Advertisement

APPEARS IN

 RD Sharma Solution for Class 10 Maths (2018 (Latest))
Chapter 4: Quadratic Equations
Ex. 4.3 | Q: 17 | Page no. 19
 RD Sharma Solution for Class 10 Maths (2018 (Latest))
Chapter 4: Quadratic Equations
Ex. 4.3 | Q: 17 | Page no. 19
Advertisement
Solve the Following Quadratic Equations by Factorization: Concept: Solutions of Quadratic Equations by Factorization.
Advertisement
View in app×