CBSE (Arts) Class 12CBSE
Account
It's free!

User


Login
Create free account


      Forgot password?
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for Solve the differential equation (1 + x2) dy/dx+y=e^(tan^(−1))x. - CBSE (Arts) Class 12 - Mathematics

Question

Solve the differential equation ` (1 + x2) dy/dx+y=e^(tan^(−1))x.`

Solution

`(1 + x2) dy/dx+y=e^(tan^(−1))x`

`=>dy/dx+y/(1+x^2)=e^(tan^(−1)x)/(1+x^2)`

Comparing it with the standard equation, f'(x)+yP=Q

Now, integrating factor, `I.F. = e^(∫Pdx)=e^(int1/(1+x^2)dx)=e^(tan^(-1)x)`

`ye^(∫P(x)dx)=∫Q(x)e^(∫P(x)dx)dx+C`

`∴ ye^(tan^(−1) x)=∫(e^(tan^(−1) x))/(1+x^2)e^(tan^(−1) x)dx+C            .....(1)`

`Let I=∫(e^(tan^(−1) x))/(1+x^2)e^(tan^(−1) x)dx`

Putting `e^(tan^(−1) x)=t`

`∫1/(1+x^2)e^(tan^(−1) x)dx=dt`

`∴ I=∫t dt   `

`I=t^2/2`

`⇒I=((e^(tan^(−1) x))^2)/2`

Considering (1), we get:

`ye^(tan^(−1) x)=(e^(tan^(−1) x)/2)^2+C`

  Is there an error in this question or solution?
Solution for question: Solve the differential equation (1 + x2) dy/dx+y=e^(tan^(−1))x. concept: Solutions of Linear Differential Equation. For the courses CBSE (Arts), PUC Karnataka Science, CBSE (Science), CBSE (Commerce), ISC (Arts), ISC (Commerce), ISC (Science)
S