# Solution - Two Long Coaxial Insulated Solenoids, S1 and S2 of Equal Lengths Are Wound One Over the Other as Shown in the Figure. a Steady Current "I" Flow Thought the Inner Solenoid S1 to the Other End B, Which is Connected to the Outer Solenoid S2 Through Which the Same Current "I" Flows in the Opposite Direction So as to Come Out at End A. - Solenoid and the Toroid - the Solenoid

Account
Register

Share

Books Shortlist

#### Question

Two long coaxial insulated solenoids, S1 and S2 of equal lengths are wound one over the other as shown in the figure. A steady current "I" flow thought the inner solenoid S1 to the other end B, which is connected to the outer solenoid S2 through which the same current "I" flows in the opposite direction so as to come out at end A. If n1 and n2 are the number of turns per unit length, find the magnitude and direction of the net magnetic field at a point (i) inside on the axis and (ii) outside the combined system

#### Solution

You need to to view the solution
Is there an error in this question or solution?

#### Similar questions VIEW ALL

An observer to the left of a solenoid of N turns each of cross section area 'A' observes that a steady current I in it flows in the clockwise direction. Depict the magnetic field lines due to the solenoid specifying its polarity and show that it acts as a bar magnet of magnetic moment m = NIA.

view solution

Obtain the expression for mutual inductance of a pair of long coaxial solenoids each of length l and radii r1 and r2 (r2 >> r1). Total number of turns in the two solenoids are N1 and N2, respectively.

view solution

A magnetic field of 100 G (1 G = 10−4 T) is required which is uniform in a region of linear dimension about 10 cm and area of cross-section about 10−3 m2. The maximum current-carrying capacity of a given coil of wire is 15 A and the number of turns per unit length that can be wound round a core is at most 1000 turns m−1. Suggest some appropriate design particulars of a solenoid for the required purpose. Assume the core is not ferromagnetic

view solution

Define self-inductance of a coil. Obtain an expression for the energy stored in a solenoid of self-inductance ‘L’ when the current through it grows from zero to ‘I’.

view solution

Derive an expression for the mutual inductance of two long co-axial solenoids of same length wound one over the other,

view solution
Solution for question: Two Long Coaxial Insulated Solenoids, S1 and S2 of Equal Lengths Are Wound One Over the Other as Shown in the Figure. a Steady Current "I" Flow Thought the Inner Solenoid S1 to the Other End B, Which is Connected to the Outer Solenoid S2 Through Which the Same Current "I" Flows in the Opposite Direction So as to Come Out at End A. concept: Solenoid and the Toroid - the Solenoid. For the courses 12th CBSE (Arts), 12th CBSE (Commerce), 12th CBSE (Science)
S