# Solution - An Observer to the Left of a Solenoid of N Turns Each of Cross Section Area 'A' Observes that a Steady Current I in It Flows in the Clockwise Direction. Depict the Magnetic Field Lines Due to the Solenoid Specifying Its Polarity and Show that It Acts as a Bar Magnet of Magnetic Moment M = NIA - Solenoid and the Toroid - the Solenoid

Account
Register

Share

Books Shortlist

#### Question

An observer to the left of a solenoid of N turns each of cross section area 'A' observes that a steady current I in it flows in the clockwise direction. Depict the magnetic field lines due to the solenoid specifying its polarity and show that it acts as a bar magnet of magnetic moment m = NIA.

#### Solution

You need to to view the solution
Is there an error in this question or solution?

#### Similar questions VIEW ALL

Derive an expression for the mutual inductance of two long co-axial solenoids of same length wound one over the other,

view solution

Derive the expression for the magnetic field due to a solenoid of length ‘2l’, radius ‘a’ having ’n’ number of turns per unit length and carrying a steady current ‘I’ at a point
on the axial line, distance ‘r’ from the centre of the solenoid. How does this expression compare with the axial magnetic field due to a bar magnet of magnetic moment ‘m’?

view solution

Two long coaxial insulated solenoids, S1 and S2 of equal lengths are wound one over the other as shown in the figure. A steady current "I" flow thought the inner solenoid S1 to the other end B, which is connected to the outer solenoid S2 through which the same current "I" flows in the opposite direction so as to come out at end A. If n1 and n2 are the number of turns per unit length, find the magnitude and direction of the net magnetic field at a point (i) inside on the axis and (ii) outside the combined system

view solution

Use this law to obtain the expression for the magnetic field inside an air cored toroid of average radius 'r', having 'n' turns per unit length and carrying a steady current I.

view solution

A magnetic field of 100 G (1 G = 10−4 T) is required which is uniform in a region of linear dimension about 10 cm and area of cross-section about 10−3 m2. The maximum current-carrying capacity of a given coil of wire is 15 A and the number of turns per unit length that can be wound round a core is at most 1000 turns m−1. Suggest some appropriate design particulars of a solenoid for the required purpose. Assume the core is not ferromagnetic

view solution
Solution for question: An Observer to the Left of a Solenoid of N Turns Each of Cross Section Area 'A' Observes that a Steady Current I in It Flows in the Clockwise Direction. Depict the Magnetic Field Lines Due to the Solenoid Specifying Its Polarity and Show that It Acts as a Bar Magnet of Magnetic Moment M = NIA concept: Solenoid and the Toroid - the Solenoid. For the courses 12th CBSE (Arts), 12th CBSE (Commerce), 12th CBSE (Science)
S