सोबतच्या आकृतीत, बिंदू M वर्तुळकेंद्र आणि रेख KL हा स्पर्शिकाखंड आहे. जर MK = 12, KL = 63 तर (1) वर्तुळाची त्रिज्या काढा. (2) ∠K आणि ∠M यांची मापे ठरवा. - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements
Sum

सोबतच्या आकृतीत, बिंदू M वर्तुळकेंद्र आणि रेख KL हा स्पर्शिकाखंड आहे. जर MK = 12, KL = `6sqrt3` तर

(1) वर्तुळाची त्रिज्या काढा.

(2) ∠K आणि ∠M यांची मापे ठरवा.

Advertisements

Solution

(1) रेख KL हा बिंदू L मध्ये स्पर्शिकाखंड आहे. व रेख ML ही वर्तुळाची त्रिज्या आहे.  ......[पक्ष]

∴ ∠MLK = 90°  ...(i) [स्पर्शिका-त्रिज्या प्रमेय]

ΔMLK मध्ये, ∠MLK = 90°

∴ MK2 = ML2 + KL2  .....[पायथागोरसचे प्रमेय]

∴ 122 = ML2 + `(6sqrt3)^2` 

∴ 144 = ML2 + 108

∴ ML2 = 144 - 108

∴ ML2 = 36

∴ ML = `sqrt36` = 6 एकक ......[दोन्ही बाजूंचे वर्गमूळ घेऊन]

∴ वर्तुळाची त्रिज्या = 6 एकक

(2) आपल्याला माहीत आहे, की

ML = `1/2`MK

∠K = 30° ........(ii) [30° - 60° - 90° त्रिकोणाच्या प्रमेयाचा व्यत्यास]

ΔMLK मध्ये,

∠L = 90° ......[(i) वरून]

∠K = 30° ......[(ii) वरून]

∠M = 60° ......[ΔMLK चा उर्वरित कोन]

Concept: स्पर्शिका - त्रिज्या प्रमेय
  Is there an error in this question or solution?
Chapter 3: वर्तुळ - संकीर्ण प्रश्नसंग्रह 3 [Page 84]

APPEARS IN

Balbharati Mathematics 2 Geometry 10th Standard SSC Maharashtra State Board [गणित २ भूमिती इयत्ता १० वी]
Chapter 3 वर्तुळ
संकीर्ण प्रश्नसंग्रह 3 | Q 3. | Page 84

RELATED QUESTIONS

सोबतच्या आकृतीत, केंद्र C असलेल्या वर्तुळाची त्रिज्या 6 सेमी आहे. रेषा AB या वर्तुळाला बिंदू A मध्ये स्पर्श करते. या माहितीवरून खालील प्रश्नांची उत्तरे द्या.

(1) ∠CAB चे माप किती अंश आहे? का?

(2) बिंदू C हा रेषा AB पासून किती अंतरावर आहे? का?

(3) जर d(A,B) = 6 सेमी, तर d(B,C) काढा.

(4) ∠ABC चे माप किती अंश आहे? का?


त्रिज्या 4.5 सेमी असलेल्या वर्तुळाच्या दोन स्पर्शिका परस्परांना समांतर आहेत. तर त्या स्पर्शिकांतील अंतर किती हे सकारण लिहा.


आकृती मध्ये, केंद्र P आणि Q असलेली वर्तुळे परस्परांना बिंदू R मध्ये स्पर्श करतात. बिंदू R मधून जाणारी रेषा त्या वर्तुळांना अनुक्रमे बिंदू A व बिंदू B मध्ये छेदते. तर -

(1) रेख AP || रेख BQ हे सिद्ध करा.

(2) ΔAPR ~ ΔRQB हे सिद्ध करा.

(3) जर ∠PAR चे माप 35° असेल, तर ∠RQB चे माप ठरवा.


आकृती मध्ये, केंद्र A व B असणारी वर्तुळे परस्परांना बिंदू E मध्ये स्पर्श करतात. रेषा l ही त्यांची सामाईक स्पर्शिका त्यांना अनुक्रमे C व D मध्ये स्पर्श करते. जर वर्तुळांच्या त्रिज्या अनुक्रमे 4 सेमी व 6 सेमी असतील, तर रेख CD ची लांबी किती असेल?


बिंदू O केंद्र असलेल्या वर्तुळाला रेषा l बिंदू P मध्ये स्पर्श करते. जर वर्तुळाची त्रिज्या 9 सेमी असेल, तर खालील प्रश्नांची उत्तरे लिहा.

(1) d(O, P) = किती? का?

(2) जर d(O, Q) = 8 सेमी असेल. तर बिंदू Q चे स्थान कोठे असेल?

(3) d(O, R)=15 सेमी असेल तर बिंदू R ची किती स्थाने रेषा l वर असतील? ते बिंदू P किती अंतरावर असतील?


सोबतच्या आकृतीमध्ये, केंद्र C असलेल्या वर्तुळात रेषा AB या वर्तुळाला बिंदू A मध्ये स्पर्श करते, तर ∠CAB चे माप किती अंश आहे? का? 

 


वर्तुळाच्या बाह्यभागातील बिंदूपासून त्या वर्तुळाला काढलेले स्पर्शिकाखंड एकरूप असतात हे प्रमेय सिद्ध करण्यासाठी आकृतीच्या आधारे खालील कृती पूर्ण करा.

पक्ष: `square`

साध्य: `square`

सिद्धता:  

त्रिज्या AP आणि AQ काढून प्रमेयाची खाली दिलेली सिद्धता रिकाम्या जागा भरून पूर्ण करा.

ΔPAD आणि ΔQAD यांमध्ये,

बाजू PA ≅ बाजू `square` ...........[एकाच वर्तुळाच्या त्रिज्या]

बाजू AD ≅ बाजू AD ...............[`square`]

∠APD ≅ ∠AQD = 90°  ............[स्पर्शिका-त्रिज्या प्रमेय]

∴ ΔPAD ≅ ΔQAD ..................[`square`]

∴ बाजू DP ≅ बाजू DQ ...............[`square`]


आकृतीत रेख RM आणि रेख RN हे केंद्र O असलेल्या वर्तुळाचे स्पर्शिका खंड आहेत, तर रेख OR हा ∠MRN आणि ∠MON या दोन्ही कोनांचा दुभाजक आहे, हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.

सिद्धता:

ΔRMO आणि ΔRNO यांमध्ये,

∠RMO ≅ ∠RNO = 90° ...............[`square`]

कर्ण OR ≅ कर्ण OR …..............[`square`]

बाजू OM ≅ बाजू [`square`]  ..........…[एकाच वर्तुळाच्या त्रिज्या]

∴ ΔRMO ≅ ΔRNO ….......[`square`]

∠MOR ≅ ∠NOR

तसेच, ∠MRO ≅ [`square`] ......................[`square`]

∴ रेख OR ∠MRN आणि ∠MON या दोन्ही कोनांची दुभाजक आहे.


आकृतीमध्ये, O हा वर्तुळाचा केंद्रबिंदू आहे. रेषा AQ ही स्पर्शिका आहे. जर OP = 3 आणि m(कंस PM) = 120° असेल, तर AP ची लांबी काढा? 

 


वरील आकृतीत, C केंद्र असलेल्या वर्तुळाला A या बाह्यबिंदूतून AB आणि AD हे स्पर्शिकाखंड काढले आहेत. तर सिद्ध करा:

∠A = `1/2` [m(कंस BYD) - m(कंस BXD)]


Share
Notifications



      Forgot password?
Use app×