Advertisement Remove all ads

∫ Sin X ( 1 + Cos X ) 2 D X - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum
\[\int\frac{\sin x}{\left( 1 + \cos x \right)^2} dx\]

 

Advertisement Remove all ads

Solution

\[\int\frac{\sin x}{\left( 1 + \cos x \right)^2}dx\]
\[\text{Let 1} + \cos x = t\]
\[ \Rightarrow - \sin x = \frac{dt}{dx}\]
\[ \Rightarrow \text{sin x dx} = - dt\]
\[Now, \int\frac{\sin x}{\left( 1 + \cos x \right)^2}dx\]
\[ = \int - \frac{dt}{t^2}\]
\[ = - \int t^{- 2} dt\]
\[ = - \left[ \frac{t^{- 2 + 1}}{- 2 + 1} \right] + C\]
\[ = \frac{1}{t} + C\]
\[ = \frac{1}{1 + \cos x} + C\]

Concept: Definite Integral as the Limit of a Sum
  Is there an error in this question or solution?

APPEARS IN

RD Sharma Class 12 Maths
Chapter 19 Indefinite Integrals
Exercise 19.9 | Q 29 | Page 58
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×