∫sin 5x2sin x2dx is equal to ______. (where C is a constant of integration). - Mathematics (JEE Main)

Advertisements
Advertisements
MCQ
Fill in the Blanks

`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).

Options

  • x + 2sin x + 2sin2x + C

  • 2x + sin x + 2sin2x + C

  • x + 2sinx + sin2x + C

  • 2x + sinx + sin2x + C

Advertisements

Solution

`int (sin  (5x)/2)/(sin  x/2)dx` is equal to x + 2sinx + sin2x + C. (where C is a constant of integration).

Explanation:

`int (sin  (5x)/2)/(sin  x/2)dx`

`int (2sin  (5x)/2 cos  x/2)/(2sin  x/2 cos  x/2)dx`

= `int (sin3x + sin2x)/sinx dx`

Using 2sinAcosB = sin(A + B) + sin(A – B)

= `int (3sinx - 4sin^3x + 2sinxcosx)/sinx dx`

= `int(3 - 4sin^2x + 2cosx)dx`

= `(3 - 4((1 - cos2x)/2) + 2cosx)dx`

= 3x + 2sinx – 2x + sin2x + C

= x + 2sinx + sin2x + C

  Is there an error in this question or solution?

RELATED QUESTIONS

Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`


Evaluate :

`int(sqrt(cotx)+sqrt(tanx))dx`


Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Find : `int(x+3)sqrt(3-4x-x^2dx)`


Find `intsqrtx/sqrt(a^3-x^3)dx`


Evaluate: `int sqrt(tanx)/(sinxcosx) dx`


Integrate the functions:

`sqrt(ax + b)`


Integrate the functions:

`x/(9 - 4x^2)`


Integrate the functions:

`x/(e^(x^2))`


Integrate the functions:

`(sin^(-1) x)/(sqrt(1-x^2))`


Integrate the functions:

`1/(1 + cot x)`


Integrate the functions:

`1/(1 - tan x)`


`int (dx)/(sin^2 x cos^2 x)` equals:


Evaluate: `int 1/(x(x-1)) dx`


Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


Evaluate: `int (2y^2)/(y^2 + 4)dx`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


Evaluate: `int (sec x)/(1 + cosec x) dx`


\[\int\sqrt{x - x^2} dx\]

\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

\[\int\sqrt{9 - x^2}\text{ dx}\]

\[\int\sqrt{16 x^2 + 25} \text{ dx}\]

Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]

Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


Write a value of

\[\int e^x \sec x \left( 1 + \tan x \right) \text{ dx }\]

Write a value of

\[\int e^{\text{ log  sin x  }}\text{ cos x}. \text{ dx}\]

 Write a valoue of \[\int \sin^3 x \cos x\ dx\]

 


Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].


Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]


Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]


Write a value of\[\int \log_e x\ dx\].

 


Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].


Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]


\[If \int e^x \left( \tan x + 1 \right)\text{ sec  x  dx } = e^x f\left( x \right) + C, \text{ then  write  the value  of  f}\left( x \right) .\]

 

 


The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


The value of \[\int\frac{1}{x + x \log x} dx\] is


 Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`


Find : ` int  (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`


Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`


Integrate the following w.r.t. x : `3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`


Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`


Evaluate the following integrals : `int sin x/cos^2x dx`


Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Evaluate the following integrals : `int sin 4x cos 3x dx`


Evaluate the following integrals:

`int x/(x + 2).dx`


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`


Evaluate the following integrals:

`int (sin4x)/(cos2x).dx`


Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`


Evaluate the following integrals : `int cos^2x.dx`


Integrate the following functions w.r.t. x : `(logx)^n/x`


Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`


Integrate the following functions w.r.t. x : x9.sec2(x10)


Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1 


Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`


Integrate the following functions w.r.t. x : `x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`


Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`


Integrate the following functions w.r.t. x : tan5x


Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Evaluate the following : `int (1)/(25 - 9x^2).dx`


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`


Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`


Evaluate the following : `(1)/(4x^2 - 20x + 17)`


Evaluate the following:

`int (1)/sqrt((x - 3)(x + 2)).dx`


Evaluate the following : `int sinx/(sin 3x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Evaluate the following integrals : `int sqrt((9 - x)/x).dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


Choose the correct options from the given alternatives :

`int sqrt(cotx)/(sinx*cosx)*dx` =


Choose the correct options from the given alternatives :

`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =


Choose the correct options from the given alternatives : 

`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =


integrate the following with respect to the respective variable : `x^2/(x + 1)`


Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`


Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx


Evaluate `int (3"x"^2 - 5)^2` dx


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate the following.

`int 1/("x" log "x")`dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx


`int sqrt(1 + "x"^2) "dx"` =


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


Evaluate: ∫ |x| dx if x < 0


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


`int x^2/sqrt(1 - x^6)` dx = ________________


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


`int sqrt(x^2 + 2x + 5)` dx = ______________


`int 2/(sqrtx - sqrt(x + 3))` dx = ________________


`int (log x)/(log ex)^2` dx = _________


`int  ("e"^x(x - 1))/(x^2)  "d"x` = ______ 


`int ("e"^(3x))/("e"^(3x) + 1)  "d"x`


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`


`int cot^2x  "d"x`


`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`


Choose the correct alternative:

`int(1 - x)^(-2) dx` = ______.


To find the value of `int ((1 + logx))/x` dx the proper substitution is ______


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


State whether the following statement is True or False:

`int"e"^(4x - 7)  "d"x = ("e"^(4x - 7))/(-7) + "c"`


`int x^3"e"^(x^2) "d"x`


If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______ 


`int1/(4 + 3cos^2x)dx` = ______ 


`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`


`int (cos x)/(1 - sin x) "dx" =` ______.


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


`int ("d"x)/(x(x^4 + 1))` = ______.


The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


`int(log(logx) + 1/(logx)^2)dx` = ______.


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


The value of `intsinx/(sinx - cosx)dx` equals ______.


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


`int 1/(sinx.cos^2x)dx` = ______.


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


`int (logx)^2/x dx` = ______.


Find `int dx/sqrt(sin^3x cos(x - α))`.


`int secx/(secx - tanx)dx` equals ______.


Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate `int 1/("x"("x" - 1)) "dx"`


Evaluate the following.

`int 1/(x^2 + 4x - 5)  dx`


Evaluate `int(1 + x + x^2/(2!))dx`


Evaluate the following.

`int x sqrt(1 + x^2)  dx`


Evaluate `int (1)/(x(x - 1))dx`


Evaluate `int 1/(x(x-1))dx`


`int x^2/sqrt(1 - x^6)dx` = ______.


If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int1/(x^2+4x-5) dx`


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


The value of `int dx/(sqrt(1 - x))` is ______.


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4)) dx`


Evaluate the following:

`int x^3/(sqrt(1+x^4))dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Share
Notifications



      Forgot password?
Use app×