Advertisement Remove all ads

∫ Sin − 1 ( 3 X − 4 X 3 ) D X - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]
Advertisement Remove all ads

Solution

\[\int\]  sin–1 (3x – 4x3)dx
Let x = sin θ
⇒ dx = cos​ θ.dθ
θ = sin–1 x

\[\int\]  sin–1 (3x – 4x3)dx =
\[\int\]  sin–1 (3 sin ​θ – 4 sin3 ​θ) . cos ​θ d​θ
                                = ∫ sin–1 (sin 3​θ) . cos ​θ d​θ

\[= 3\int \theta_I . \cos _{II} \theta   d\theta\]

\[ = 3\left[ \theta\int\cos \theta d\theta - \int\left\{ \frac{d}{d\theta}\left( \theta \right) - \int\cos \theta d\theta \right\}d\theta \right]\]

\[ = 3\left[ \theta . \sin \theta - \int1 . \sin \theta d\theta \right]\]

\[ = 3\left[ \theta . \sin \theta + \cos \theta \right] + C\]

\[ = 3\left[ \theta . \sin \theta + \sqrt{1 - \sin^2 \theta} \right] + C\]

\[ = 3\left[ \left( \sin^{- 1} x \right) . x + \sqrt{1 - x^2} \right] + C \left( \because \theta = \sin^{- 1} x \right)\]

 

Concept: Indefinite Integral Problems
  Is there an error in this question or solution?

APPEARS IN

RD Sharma Class 12 Maths
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 35 | Page 134

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×