Karnataka Board PUCPUC Science 2nd PUC Class 12

`Sin^-1 1/2-2sin^-1 1/Sqrt2` - Mathematics

Advertisements
Advertisements

`sin^-1  1/2-2sin^-1  1/sqrt2`

Advertisements

Solution

`sin^-1  1/2-2sin^-1  1/sqrt2 =sin^-1  1/2-sin^-1 2xx1/sqrt2sqrt(1-(1/sqrt2)^2)`

`=sin^-1  1/2-sin^-1sqrt2xx1/sqrt2`

`=sin^-1  1/2-sin^-1  1`

`=sin^-1(sin  pi/6)-sin^-1(sin  pi/2)`

`=pi/6-pi/2`

`=-pi/3`

  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.01 [Page 7]

APPEARS IN

RD Sharma Class 12 Maths
Chapter 4 Inverse Trigonometric Functions
Exercise 4.01 | Q 2.1 | Page 7

RELATED QUESTIONS

If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `


Show that `2sin^-1(3/5) = tan^-1(24/7)`


Find the principal values of `sin^(-1) (-1/2)`


Find the principal value of `tan^(-1) (-sqrt3)`


Find the principal value of tan−1 (−1)


Find the principal value of `cot^(-1) (sqrt3)`


Find the principal value of  `cos^(-1) (-1/sqrt2)`


`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.


Find the value of the following:

`tan^(-1) (tan  (7x)/6)`


Prove that:

`tan^-1  ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`

[Hint: put x =  cos 2θ]


`sin^-1{cos(sin^-1  sqrt3/2)}`


Find the domain of the following function:

`f(x)=sin^-1x^2`

 


Find the domain of the following function:

`f(x) = sin^-1x + sinx`


Find the domain of the following function:

`f(x)sin^-1sqrt(x^2-1)`


If `sin^-1 x + sin^-1 y+sin^-1 z+sin^-1 t=2pi` , then find the value of x2 + y2 + z2 + t2 


Evaluate the following:

`tan^-1 1+cos^-1 (-1/2)+sin^-1(-1/2)`


Evaluate the following:

`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`


Evaluate the following:

`tan^-1(tan  (5pi)/6)+cos^-1{cos((13pi)/6)}`


Find the set of values of `cosec^-1(sqrt3/2)`


Find the domain of `f(x)=cotx+cot^-1x`


Evaluate the following:

`cot^-1  1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`


Evaluate the following:

`cot^-1{2cos(sin^-1  sqrt3/2)}`


Evaluate the following:

`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`


Solve for x:
`tan^-1 [(x-1),(x-2)] + tan^-1 [(x+1),(x+2)] = x/4`


Evaluate: tan `[ 2 tan^-1  (1)/(2) – cot^-1 3]`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of cosA


In ΔABC, if a = 18, b = 24, c = 30 then find the values of sin `A/2`.


In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)


In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA


In ΔABC prove that `(b + c - a) tan  "A"/(2) = (c + a - b)tan  "B"/(2) = (a + b - c)tan  "C"/(2)`.


Find the principal value of the following: `sin^-1 (1/2)`


Find the principal value of the following: cosec- 1(2)


Find the principal value of the following: sin-1 `(1/sqrt(2))`


Evaluate the following:

`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`


Evaluate the following:

`cos^-1(1/2) + 2sin^-1(1/2)`


Evaluate the following:

`tan^-1 sqrt(3) - sec^-1 (-2)`


Evaluate the following:

`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`


Prove the following:

`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`


Prove the following:

`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`


Prove the following:

`cos^-1(3/5) + cos^-1(4/5) = pi/(2)`


Prove the following:

`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`


Prove the following: 

`2tan^-1(1/3) = tan^-1(3/4)`


Prove the following:

`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`


Prove the following:

`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).


In ΔABC, prove the following:

`"cos A"/"a" + "cos B"/"b" + "cos C"/"c" = ("a"^2 + "b"^2 + "c"^2)/(2"abc")`


Find the principal solutions of the following equation:

sin 2θ = `− 1/(sqrt2)`


Find the principal solutions of the following equation:
tan 5θ = -1


Find the principal solutions of the following equation:

cot 2θ = 0.


sin−1x − cos−1x = `pi/6`, then x = ______


The principal value of sin−1`(1/2)` is ______


`tan^-1(tan  (7pi)/6)` = ______


If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______


Evaluate cot(tan−1(2x) + cot−1(2x))


Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`


Evaluate:

`sin[cos^-1 (3/5)]`


Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`


If tan−1x + tan−1y + tan−1z = π, then show that `1/(xy) + 1/(yz) + 1/(zx)` = 1


Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1


Prove that cot−1(7) + 2 cot−1(3) = `pi/4`


Find the principal value of the following:

tan-1 (-1)


Find the principal value of the following:

`sec^-1 (-sqrt2)`


Prove that:

`tan^-1 (4/3) + tan^-1 (1/7) = pi/4`


Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`


Solve `tan^-1 2x + tan^-1 3x = pi/4`


Evaluate: `cos (sin^-1 (4/5) + sin^-1 (12/13))`


Prove that `tan^-1 (m/n) - tan^-1 ((m - n)/(m + n)) = pi/4`


Show that `sin^-1 (- 3/5) - sin^-1 (- 8/17) = cos^-1 (84/85)`


Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.


Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.


Find the principal value of `sin^-1  1/sqrt(2)`


Find the principal value of `cos^-1  sqrt(3)/2`


Find the principal value of cosec–1(– 1)


Find the principal value of `sec^-1 (- sqrt(2))`


A man standing directly opposite to one side of a road of width x meter views a circular shaped traffic green signal of diameter ‘a’ meter on the other side of the road. The bottom of the green signal Is ‘b’ meter height from the horizontal level of viewer’s eye. If ‘a’ denotes the angle subtended by the diameter of the green signal at the viewer’s eye, then prove that α = `tan^-1 (("a" + "b")/x) - tan^-1 ("b"/x)`


The value of cot `(tan^-1 2x + cot^-1 2x)` is ______ 


lf `sqrt3costheta + sintheta = sqrt2`, then the general value of θ is ______ 


The principle solutions of equation tan θ = -1 are ______ 


sin[3 sin-1 (0.4)] = ______.


`sin^2(sin^-1  1/2) + tan^2 (sec^-1  2) + cot^2(cosec^-1  4)` = ______.


The principal value of `sin^-1 (sin  (3pi)/4)` is ______.


`tan[2tan^-1 (1/3) - pi/4]` = ______.


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then θ = ______ 


`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.


Show that `cos(2tan^-1  1/7) = sin(4tan^-1  1/3)`


`"cos"  2 theta` is not equal to ____________.


When `"x" = "x"/2`, then tan x is ____________.


`"sin"^2 25° +  "sin"^2 65°` is equal to ____________.


If `"cos"^-1  "x + sin"^-1  "x" = pi`, then the value of x is ____________.


If tan-1 (x – 1) + tan-1 x + tan-1 (x + 1) = tan-1 3x, then the values of x are ____________.


If 6sin-1 (x2 – 6x + 8.5) = `pi`, then x is equal to ____________.


`"sin"^-1 (1 - "x") - 2  "sin"^-1  "x" = pi/2`


The value of `"cos"^-1 ("cos" ((33 pi)/5))` is ____________.


`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.


If `"x" in (- pi/2, pi/2), "then the value of tan"^-1 ("tan x"/4) + "tan"^-1 ((3 "sin" 2 "x")/(5 + 3 "cos" 2 "x"))` is ____________.


If tan-1 x – tan-1 y = tan-1 A, then A is equal to ____________.


`2"tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`


If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is 


If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is 


If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then


Which of the following functions is inverse of itself?


The number of solutions of sin–1x + sin–1(1 – x) = cos–1x is


sin 6θ + sin 4θ + sin 2θ = 0, then θ =


The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is


If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to


What is the value of `sin^-1(sin  (3pi)/4)`?


Domain and Rariges of cos–1 is:-


What will be the principal value of `sin^-1(-1/2)`?


What is the principal value of cosec–1(2).


Find the value, if sin–1x = y, then `->`:-


Values of tan–1 – sec–1(–2) is equal to


`sin(tan^-1x), |x| < 1` is equal to


`tan^-1  (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.


Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to


If `sin(sin^-1  1/5 + cos^-1 x) = 1`, the what will be the value of x?


If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.


If f'(x) = x–1, then find f(x)


If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.


Consider f(x) = sin–1[2x] + cos–1([x] – 1) (where [.] denotes greatest integer function.) If domain of f(x) is [a, b) and the range of f(x) is {c, d} then `a + b + (2d)/c` is equal to ______. (where c < d) 


Let x = sin–1(sin8) + cos–1(cos11) + tan–1(tan7), and x = k(π – 2.4) for an integer k, then the value of k is ______.


Number of values of x satisfying the system of equations `sin^-1sqrt(2 + e^(-2x) - 2e^-x) + sec^-1sqrt(1 - x^2 + x^4) = π/2` and `5^(1+tan^-1x)` = 4 + [cos–1x] is ______ (where [.] denotes greatest integer function)


cos–1(cos10) is equal to ______.


`cot^-1(sqrt(cos α)) - tan^-1 (sqrt(cos α))` = x, then sin x = ______.


Derivative of `tan^-1(x/sqrt(1 - x^2))` with respect sin–1(3x – 4x3) is ______.


If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = `π/2`


If sin–1x – cos–1x = `π/6`, then x = ______.


Prove that:

tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1


The value of `tan(cos^-1  4/5 + tan^-1  2/3)` is ______.


Find the value of `sin(2cos^-1  sqrt(5)/3)`.


Solve for x:

5tan–1x + 3cot–1x = 2π


If tan 4θ = `tan(2/θ)`, then the general value of θ is ______.


Share
Notifications



      Forgot password?
Use app×