Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Simplify the following expressions:
`(2sqrt5 + 3sqrt2)^2`
Advertisement Remove all ads
Solution
We know that `(a + b)^2 = a^2 + b^2 + 2ab`. We will use this property to simplify the expression
`(2sqrt5 + 3sqrt2)^2`
`∴ (2sqrt5 + 3sqrt2)^2 = (2sqrt5)^2 + (3sqrt2)^2 + 2 xx 2sqrt5 xx 3 sqrt2`
`= 2sqrt5 xx 2sqrt5 + 3sqrt2 xx 3sqrt2 + 2 xx 2sqrt5 xx 3sqrt2`
`= 2 xx 2sqrt(5 xx 5) + 3 xx 3sqrt(2 xx 2) + 2 xx 2 xx 3sqrt(5 xx 2)`
`= 4(5^2)^(1/2) + 9(2^2)^(1/2) + 12sqrt10`
`= 4 xx 5^1 + 9 xx 2^1 + 12sqrt10`
` = 20 + 18 + 12sqrt10`
`= 38 + 12sqrt10`
Hence the value of expression is `38 + 12sqrt10`
Concept: Operations on Real Numbers
Is there an error in this question or solution?