Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Simplify:
`(5 + sqrt3)/(5 - sqrt3) + (5 - sqrt3)/(5 + sqrt3)`
Advertisement Remove all ads
Solution
We know that rationalization factor for `sqrt5 - sqrt3` and `sqrt5 + sqrt3` are `sqrt5 + sqrt3` and `sqrt5 - sqrt3` respectively.
We will multiply numerator and denominator of the given expression `(sqrt5 + sqrt3)/(sqrt5 - sqrt3)` and `(sqrt5 - sqrt3)/(sqrt5 + sqrt3)` by `sqrt5 + sqrt3` and `sqrt5 + sqrt3` respectively, to get
`(sqrt5 + sqrt3)/(sqrt5 - sqrt3) xx (sqrt5 + sqrt3)/(sqrt5 + sqrt3) + (sqrt5 - sqrt3)/(sqrt5 + sqrt3) xx (sqrt5 - sqrt3)/(sqrt5 - sqrt3) = ((sqrt5)^2 + (sqrt3)^2 + 2 xx sqrt5 xx sqrt3)/((sqrt5)^2- (sqrt3)^2)`
`(5 + 3 + 2sqrt15)/(5- 3) + (5 + 3 - 2sqrt15)/(5 - 3)`
`= (5 + 3 + 2sqrt15 + 5 + 3 - 2sqrt15)/2`
= 16/2
= 8
Hence the given expression is simplified to 8
Concept: Operations on Real Numbers
Is there an error in this question or solution?