CBSE (Science) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for Sin X = 2 T 1 + T 2 , Tan Y = 2 T 1 − T 2 , Find D Y D X ? - CBSE (Science) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

\[\sin x = \frac{2t}{1 + t^2}, \tan y = \frac{2t}{1 - t^2}, \text { find }  \frac{dy}{dx}\] ?

Solution

\[\sin x = \frac{2t}{1 + t^2}\text {  and } \tan y = \frac{2t}{1 - t^2}\]
\[ \Rightarrow x = \sin^{- 1} \frac{2t}{1 + t^2} \text { and y } = \tan^{- 1} \frac{2t}{1 - t^2}\]
\[ \Rightarrow x = 2 \tan^{- 1} t \text { and y } = 2 \tan^{- 1} t\]
\[ \Rightarrow \frac{dx}{dt} = \frac{2t}{1 + t^2} \text { and } \frac{dy}{dt} = \frac{2t}{1 + t^2}\]
\[ \therefore \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\frac{2t}{1 + t^2}}{\frac{2t}{1 + t^2}} = 1\]

  Is there an error in this question or solution?

Video TutorialsVIEW ALL [1]

Solution for question: Sin X = 2 T 1 + T 2 , Tan Y = 2 T 1 − T 2 , Find D Y D X ? concept: Simple Problems on Applications of Derivatives. For the courses CBSE (Science), PUC Karnataka Science, CBSE (Arts), CBSE (Commerce)
S
View in app×