CBSE (Science) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for If Y = | Log E X | Find D 2 Y D X 2 ? - CBSE (Science) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?

Solution

Here,

\[y = \left| \log_e x \right|\]
\[ =\begin{cases} - \log_e x & \text{ if } 0 < x < 1\ \\ \log_e x & \text {  if }x > 1\end{cases}\]
\[\text { Differentiating w . r . t . x, we get }\]
\[\frac{d y}{d x} = \begin{cases}\frac{- 1}{x} & \text { if } 0 < x < 1\\ \frac{1}{x} & \text { if } x > 1\end{cases}\]
\[\text { Differentiating again w . r . t . x, we get }\]
\[\frac{d^2 y}{d x^2} = \begin{cases}\frac{1}{x^2} & \text { if } 0 < x < 1\\\frac{- 1}{x^2} & \text { if } x > 1\end{cases}\]

  Is there an error in this question or solution?

Video TutorialsVIEW ALL [1]

Solution If Y = | Log E X | Find D 2 Y D X 2 ? Concept: Simple Problems on Applications of Derivatives.
S
View in app×