CBSE (Arts) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

If F ′ ( X ) = √ 2 X 2 − 1 and Y = F ( X 2 ) Then Find D Y D X at X = 1 ? - CBSE (Arts) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

If \[f'\left( x \right) = \sqrt{2 x^2 - 1} \text { and y } = f \left( x^2 \right)\] then find \[\frac{dy}{dx} \text { at } x = 1\] ?

Solution

\[\text { We have,} f'\left( x \right) = \sqrt{2 x^2 - 1}\]

\[\text {and y } = f\left( x^2 \right)\]

\[\Rightarrow \frac{dy}{dx} = \frac{d}{dx}f\left( x^2 \right)\]
\[ \Rightarrow \frac{dy}{dx} = f'\left( x^2 \right)\frac{d}{dx}\left( x^2 \right)\]
\[ \Rightarrow \frac{dy}{dx} = f'\left( x^2 \right) \times 2x\]
\[ \Rightarrow \frac{dy}{dx} = 2xf'\left( x^2 \right)\]
\[\text { Putting x } = 1, \text { we get }, \]
\[\frac{dy}{dx} = 2\left( 1 \right)f'\left( 1^2 \right)\]
\[ \Rightarrow \frac{dy}{dx} = 2 \times f'\left( 1 \right)\]
\[ \Rightarrow \frac{dy}{dx} = 2 \times 1 \left[ \because f'\left( 1 \right) = \sqrt{2 \left( 1 \right)^2 - 1} = \sqrt{2 - 1} = 1 \right]\]
\[ \Rightarrow \frac{dy}{dx} = 2\]

  Is there an error in this question or solution?

Video TutorialsVIEW ALL [1]

Solution If F ′ ( X ) = √ 2 X 2 − 1 and Y = F ( X 2 ) Then Find D Y D X at X = 1 ? Concept: Simple Problems on Applications of Derivatives.
S
View in app×