Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

# Solution for If E X + Y − X = 0 ,Prove that D Y D X = 1 − X X ? - CBSE (Commerce) Class 12 - Mathematics

Login
Create free account

Forgot password?
ConceptSimple Problems on Applications of Derivatives

#### Question

If $e^{x + y} - x = 0$ ,prove that $\frac{dy}{dx} = \frac{1 - x}{x}$ ?

#### Solution

$\text{ We have}, e^{x + y} - x = 0$
$\Rightarrow e^{x + y} = x . . . \left( 1 \right)$

Differentiating with respect to x using chain rule,

$\frac{d}{dx}\left( e^{x + y} \right) = \frac{d}{dx}\left( x \right)$
$\Rightarrow e^{x + y} \frac{d}{dx}\left( x + y \right) = 1$
$\Rightarrow x\left[ 1 + \frac{dy}{dx} \right] = 1 \left[ \text{ Using equation } \left( i \right) \right]$
$\Rightarrow 1 + \frac{dy}{dx} = \frac{1}{x}$
$\Rightarrow \frac{dy}{dx} = \frac{1}{x} - 1$
$\Rightarrow \frac{dy}{dx} = \frac{1 - x}{x}$

Is there an error in this question or solution?

#### Video TutorialsVIEW ALL [1]

Solution If E X + Y − X = 0 ,Prove that D Y D X = 1 − X X ? Concept: Simple Problems on Applications of Derivatives.
S