CBSE (Commerce) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for If E X + Y − X = 0 ,Prove that D Y D X = 1 − X X ? - CBSE (Commerce) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

If \[e^{x + y} - x = 0\] ,prove that \[\frac{dy}{dx} = \frac{1 - x}{x}\] ?

Solution

\[\text{ We have}, e^{x + y} - x = 0\]
\[ \Rightarrow e^{x + y} = x . . . \left( 1 \right)\] 

Differentiating with respect to x using chain rule, 

\[\frac{d}{dx}\left( e^{x + y} \right) = \frac{d}{dx}\left( x \right)\]
\[ \Rightarrow e^{x + y} \frac{d}{dx}\left( x + y \right) = 1\]
\[ \Rightarrow x\left[ 1 + \frac{dy}{dx} \right] = 1 \left[ \text{ Using equation } \left( i \right) \right]\]
\[ \Rightarrow 1 + \frac{dy}{dx} = \frac{1}{x}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{x} - 1\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1 - x}{x}\]

  Is there an error in this question or solution?

Video TutorialsVIEW ALL [1]

Solution If E X + Y − X = 0 ,Prove that D Y D X = 1 − X X ? Concept: Simple Problems on Applications of Derivatives.
S
View in app×