#### Question

Find the second order derivatives of the following function e^{6x} cos 3x ?

#### Solution

We have,

\[y = e^{6x} \cos 3x\]

\[\text { Differentiating w . r . t . x, we get }\]

\[\frac{d y}{d x} = e^{6x} \times 6 \times \cos 3x + e^{6x} ( - \sin 3x \times 3)\]

\[ = 6 e^{6x} \cos3x - 3 e^{6x} \sin 3x\]

\[\text { Differentiating again w . r . t . x, we get }\]

\[\frac{d^2 y}{d x^2} = 6 e^{6x} \cos3x \times 6 - 6 e^{6x} \sin3x \times 3 - 3 \times 6 e^{6x} \sin3x - 3 e^{6x} \times 3 \cos 3x\]

\[ = 27 e^{6x} \cos3x - 36 e^{6x} \sin3x\]

\[ = 9 e^{6x} \left( 3 \cos3x - 4 \sin3x \right)\]

Is there an error in this question or solution?

Solution for question: Find the Second Order Derivatives of the Following Function E6x Cos 3x ? concept: Simple Problems on Applications of Derivatives. For the courses CBSE (Science), CBSE (Commerce), PUC Karnataka Science, CBSE (Arts)