Share

Books Shortlist

# Solution for Find D Y D X Y = E a X ⋅ Sec X ⋅ Log X √ 1 − 2 X ? - CBSE (Science) Class 12 - Mathematics

ConceptSimple Problems on Applications of Derivatives

#### Question

Find  $\frac{dy}{dx}$  $y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}$ ?

#### Solution

$\text{ We have, y } = \frac{e^{ax} \sec x \log x}{\sqrt{1 - 2x}} . . . \left( i \right)$
$\Rightarrow y = \frac{e^{ax} \sec x \log x}{\left( 1 - 2x \right)^\frac{1}{2}}$

Taking log on both sides

$\log y = \log e^{ax} + logsec x + \log \log x - \frac{1}{2}\log\left( 1 - 2x \right)$
$\Rightarrow \log y = ax + \log\left( \sec x \right) + \log\left( \log x \right) - \frac{1}{2}\log\left( 1 - 2x \right)$

Differentiating with respect to x using chain rule,

$\frac{1}{y}\frac{dy}{dx} = \frac{d}{dx}\left( ax \right) + \frac{d}{dx}\left( \log \sec x \right) + \frac{d}{dx}\left( \log \log x \right) - \frac{1}{2}\log\left( 1 - 2x \right)$
$\Rightarrow \frac{1}{y}\frac{dy}{dx} = a + \frac{1}{\sec x}\frac{d}{dx}\left( \sec x \right) + \frac{1}{\log x}\frac{d}{dx}\left( \log x \right) - \frac{1}{2}\left( \frac{1}{1 - 2x} \right)\frac{d}{dx}\left( 1 - 2x \right)$
$\Rightarrow \frac{1}{y}\frac{dy}{dx} = a + \frac{\sec x \tan x}{\sec x} + \frac{1}{\left( \log x \right)}\left( \frac{1}{x} \right) - \frac{1}{2}\left( \frac{1}{1 - 2x} \right)\left( - 2 \right)$
$\Rightarrow \frac{dy}{dx} = y\left[ a + \tan x + \frac{1}{x \log x} + \frac{1}{1 - 2x} \right]$
$\Rightarrow \frac{dy}{dx} = \frac{e^{ax} \sec x \log x}{\sqrt{1 - 2x}}\left[ a + \tan x + \frac{1}{x \log x} + \frac{1}{1 - 2x} \right] \left[ \text{ Using equation }\left( i \right) \right]$

Is there an error in this question or solution?

#### Video TutorialsVIEW ALL [1]

Solution Find D Y D X Y = E a X ⋅ Sec X ⋅ Log X √ 1 − 2 X ? Concept: Simple Problems on Applications of Derivatives.
S