CBSE (Commerce) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for Differentiate Tan − 1 ( Cos X 1 + Sin X ) with Respect to Sec − 1 X ? - CBSE (Commerce) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with  respect to \[\sec^{- 1} x\] ?

Solution

\[\text { Let, u }= \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\]

\[ \Rightarrow u = \tan^{- 1} \left[ \tan\left( \frac{\pi}{4} - \frac{x}{2} \right) \right]\]

\[ \Rightarrow u = \frac{\pi}{4} - \frac{x}{2}\]

Differentiating it with respect to x,

\[\frac{du}{dx} = 0 - \left( \frac{1}{2} \right)\]

\[\frac{du}{dx} = - \frac{1}{2} . . . \left( i \right)\]

\[\text { Let, v } = se c^{- 1} x\]

Differentiating it with respect to x,

\[\frac{dv}{dx} = \frac{1}{x\sqrt{x^2 - 1}} . . . \left( ii \right)\]

\[\text { Dividing equation } \left( i \right) \text { by}\left( ii \right), \]

\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = - \frac{1}{2} \times \frac{x\sqrt{x^2 - 1}}{1}\]

\[\frac{du}{dv} = \frac{- x\sqrt{x^2 - 1}}{2}\]

  Is there an error in this question or solution?

Video TutorialsVIEW ALL [1]

Solution Differentiate Tan − 1 ( Cos X 1 + Sin X ) with Respect to Sec − 1 X ? Concept: Simple Problems on Applications of Derivatives.
S
View in app×