CBSE (Commerce) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for Differentiate Tan − 1 ( 1 − X 1 + X ) with Respect to √ 1 − X 2 , If − 1 < X < 1 ? - CBSE (Commerce) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?

Solution

\[\text { Let, u } = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\]

\[\text { Put x }= \tan\theta\]

\[ \Rightarrow \theta = \tan^{- 1} x\]

\[ \Rightarrow u = \tan^{- 1} \left( \frac{1 - \tan\theta}{1 + \tan\theta} \right)\]

\[ \Rightarrow u = \tan^{- 1} \left[ \tan\left( \frac{\pi}{4} - \theta \right) \right] . . . \left( i \right)\]

\[\text { Here,} \]

\[ - 1 < x < 1\]

\[ \Rightarrow - 1 < \tan\theta < 1\]

\[ \Rightarrow - \frac{\pi}{4} < \theta < \frac{\pi}{4}\]

\[ \Rightarrow \frac{\pi}{4} > - \theta > \frac{\pi}{4}\]

\[ \Rightarrow - \frac{\pi}{4} < - \theta < \frac{\pi}{4}\]

\[ \Rightarrow 0 < \frac{\pi}{4} - \theta < \frac{\pi}{2}\]

\[\text { So, from equation } \left( i \right), \]

\[u = \frac{\pi}{4} - \theta \left[ \text { Since }, \tan^{- 1} \left( \tan\theta \right) = \theta, \text { if } \theta \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \right]\]

\[ \Rightarrow u = \frac{\pi}{4} - \tan^{- 1} x\]

Differentiating it with respect to x,

\[\frac{du}{dx} = 0 - \left( \frac{1}{1 + x^2} \right)\]

\[ \Rightarrow \frac{du}{dx} = - \frac{1}{1 + x^2} . . . \left( ii \right)\]

\[\text {And let, v } = \sqrt{1 - x^2}\]

Differentiating it with respect to x,

\[\frac{dv}{dx} = \frac{1}{2\sqrt{1 - x^2}} \times \frac{d}{dx}\left( 1 - x^2 \right)\]

\[ \Rightarrow \frac{dv}{dx} = \frac{1}{2\sqrt{1 - x^2}}\left( - 2x \right)\]

\[ \Rightarrow \frac{dv}{dx} = \frac{- x}{\sqrt{1 - x^2}} . . . \left( iii \right)\]

\[\text { Dividing equation }\left( ii \right) by \left( iii \right), \]

\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = - \frac{1}{1 + x^2} \times \frac{\sqrt{1 - x^2}}{- x}\]

\[ \therefore \frac{du}{dv} = \frac{\sqrt{1 - x^2}}{x\left( 1 + x^2 \right)}\]

  Is there an error in this question or solution?

Video TutorialsVIEW ALL [1]

Solution for question: Differentiate Tan − 1 ( 1 − X 1 + X ) with Respect to √ 1 − X 2 , If − 1 < X < 1 ? concept: Simple Problems on Applications of Derivatives. For the courses CBSE (Commerce), CBSE (Arts), PUC Karnataka Science, CBSE (Science)
S
View in app×