CBSE (Science) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for Differentiate \[\Sin^{- 1} \Left( 2 X^2 - 1 \Right), 0 < X < 1\] ? - CBSE (Science) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\]  ?

Solution

\[\text{ Let, y } = \sin^{- 1} \left\{ 2 x^2 - 1 \right\}\]

\[\text{ Put x } = \cos \theta\]

\[ y = \sin^{- 1} \left\{ 2 \cos^2 \theta - 1 \right\}\]

\[ y = \sin^{- 1} \left( \cos2\theta \right)\]

\[ y = \sin^{- 1} \left\{ \sin\left( \frac{\pi}{2} - 2\theta \right) \right\} . . . \left( i \right) \]

\[\text{ Here }, 0 < x < 1\]

\[ \Rightarrow 0 < \cos \theta < 1\]

\[ \Rightarrow 0 < \theta < \frac{\pi}{2}\]

\[ \Rightarrow 0 < 2\theta < \pi\]

\[ \Rightarrow 0 > - 2\theta > - \pi\]

\[ \Rightarrow \frac{\pi}{2} > \left( \frac{\pi}{2} - 2\theta \right) > - \frac{\pi}{2}\]

\[ \Rightarrow - \frac{\pi}{2} < \left( \frac{\pi}{2} - 2\theta \right) < \frac{\pi}{2}\]

\[\text{ So, from equation } \left( i \right), \]

\[ y = \frac{\pi}{2} - 2\theta \left[ Since, \sin^{- 1} \left( \sin\theta \right) = \theta, if \theta \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \right]\]

\[ \Rightarrow y = \frac{\pi}{2} - 2 \cos^{- 1} x \left[ Since, x = \cos \theta \right]\]

\[\text{ Differentiating it with respect to x }, \]

\[ \frac{d y}{d x} = 0 - 2\frac{d}{dx}\left( \cos^{- 1} x \right)\]

\[ \Rightarrow \frac{d y}{d x} = - 2\left( - \frac{1}{\sqrt{1 - x^2}} \right)\]

\[ \therefore \frac{d y}{d x} = \frac{2}{\sqrt{1 - x^2}}\]

  Is there an error in this question or solution?

Video TutorialsVIEW ALL [1]

Solution Differentiate \[\Sin^{- 1} \Left( 2 X^2 - 1 \Right), 0 < X < 1\] ? Concept: Simple Problems on Applications of Derivatives.
S
View in app×