CBSE (Science) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for Differentiate Log ( X + √ X 2 + 1 ) ? - CBSE (Science) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?

Solution

\[\text{Let }y = \log\left( x + \sqrt{x^2 + 1} \right)\]

\[\text{Differentiate with respect to x we get}, \]

\[\frac{d y}{d x} = \frac{d}{dx}\log\left( x + \sqrt{x^2 + 1} \right)\]

\[ = \frac{1}{x + \sqrt{x^2 + 1}}\frac{d}{dx}\left( x + \left( x^2 + 1 \right)^\frac{1}{2} \right) \left[ \text{Using chain rule} \right]\]

\[ = \frac{1}{x + \sqrt{x^2 + 1}}\left[ 1 + \frac{1}{2} \left( x^2 + 1 \right)^{\frac{1}{2} - 1} \frac{d}{dx}\left( x^2 + 1 \right) \right]\]

\[ = \frac{1}{x + \sqrt{x^2 + 1}}\left[ 1 + \frac{1}{2\sqrt{x^2 + 1}} \times 2x \right]\]

\[ = \frac{1}{x + \sqrt{x^2 + 1}}\left[ \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1}} \right]\]

\[ = \frac{1}{\sqrt{x^2 + 1}}\]

\[So, \frac{d}{dx}\left\{ \log\left( x + \sqrt{x^2 + 1} \right) \right\} = \frac{1}{\sqrt{x^2 + 1}}\]

  Is there an error in this question or solution?

Video TutorialsVIEW ALL [1]

Solution for question: Differentiate Log ( X + √ X 2 + 1 ) ? concept: Simple Problems on Applications of Derivatives. For the courses CBSE (Science), CBSE (Commerce), CBSE (Arts), PUC Karnataka Science
S
View in app×