Share

Books Shortlist

# Solution for Differentiate the Following Functions from First Principles X2ex ? - CBSE (Science) Class 12 - Mathematics

ConceptSimple Problems on Applications of Derivatives

#### Question

Differentiate the following functions from first principles x2ex ?

#### Solution

$\text{ Let } f\left( x \right) = x^2 e^x$
$\Rightarrow f\left( x + h \right) = \left( x + h \right)^2 e^\left( x + h \right)$
$= \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}$
$= \lim_{h \to 0} \frac{\left( x + h \right)^2 e^\left( x + h \right) - x^2 e^x}{h}$
$= \lim_{h \to 0} \left( \frac{x^2 e^{x + h} - x^2 e^x}{h} + \frac{2xh e^\left( x + h \right)}{h} + \frac{h^2 e^\left( x + h \right)}{h} \right)$
$= \lim_{h \to 0} \left( \frac{x^2 e^x \left( e^\left( x + h \right) - x - 1 \right)}{h} + 2x e^\left( x + h \right) + h e^\left( x + h \right) \right)$
$= \lim_{h \to 0} \left( x^2 e^x \frac{\left( e^h - 1 \right)}{h} + 2x e^\left( x + h \right) + he\left( x + h \right) \right)$
$= x^2 e^x + 2x e^x + 0x e^x \left[ \because \lim_{x \to 0} \frac{e^x - 1}{x} = 1 \right]$
$\therefore \frac{d}{dx}\left( x^2 e^x \right) = e^x \left( x^2 + 2x \right)$

Is there an error in this question or solution?

#### Video TutorialsVIEW ALL [1]

Solution Differentiate the Following Functions from First Principles X2ex ? Concept: Simple Problems on Applications of Derivatives.
S