Share

Books Shortlist

# Solution for Differentiate E Tan − 1 √ X ? - CBSE (Science) Class 12 - Mathematics

ConceptSimple Problems on Applications of Derivatives

#### Question

Differentiate $e^{\tan^{- 1}} \sqrt{x}$ ?

#### Solution

$\text{ Let } y = e^{\tan^{- 1}} \sqrt{x}$

Differentiate it with respect to x we get,

$\frac{d y}{d x} = \frac{d}{dx}\left( e^{\tan^{- 1}} \sqrt{x} \right)$

$= e^{\tan^{- 1}} \sqrt{x} \frac{d}{dx}\left( \tan^{- 1} \sqrt{x} \right) \left[ \text{Using chain rule} \right]$

$= e^{\tan^{- 1}} \sqrt{x} \times \frac{1}{1 + \left( \sqrt{x} \right)^2}\frac{d}{dx}\left( \sqrt{x} \right)$

$= \frac{e^{\tan^{- 1}} \sqrt{x}}{1 + x} \times \frac{1}{2\sqrt{x}}$

$= \frac{e^{\tan^{- 1}} \sqrt{x}}{2\sqrt{x}\left( 1 + x \right)}$

$So, \frac{d}{dx}\left( e^{\tan^{- 1}} \sqrt{x} \right) = \frac{e^{\tan^{- 1}} \sqrt{x}}{2\sqrt{x}\left( 1 + x \right)}$

Is there an error in this question or solution?

#### Video TutorialsVIEW ALL [1]

Solution Differentiate E Tan − 1 √ X ? Concept: Simple Problems on Applications of Derivatives.
S