CBSE (Arts) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

​Differentiate E Sin X + ( Tan X ) X ? - CBSE (Arts) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?

Solution

\[\text{ Let y } = e^{\sin x} + \left( \tan x \right)^x \]

\[ \Rightarrow y = e^{ \sin x } + e^{\log \left( \tan x \right)^x } \]

\[ \Rightarrow y = e^{\sin x }+ e^{x\log\left( \tan x \right)} \]

Differentiating with respect to x

\[\frac{dy}{dx} = \frac{d}{dx}\left( e^{\sin x} \right) + \frac{d}{dx}\left\{ e^{x\log\left( \tan x \right)} \right\}\]

\[ = e^{ \sin x } \frac{d}{dx}\left( \sin x \right) + e^{x\log\left( \tan x \right)} \frac{d}{dx}\left( x \log\tan x \right) \]

\[ = e^{\sin x } \left( \cos x \right) + e^{\log \left( \tan x \right)^x }\left[ x\frac{d}{dx}\left( \log\tan x \right) + \log\tan x\frac{d}{dx}\left( x \right) \right]\]

\[ = e^{\sin x} \left( \cos x \right) + \left( \tan x \right)^x \left[ \frac{x}{\tan x}\left( \sec^2 x \right) + \log\tan x \right]\]

\[ = e^{\sin x } \left( \cos x \right) + \left( \tan x \right)^x \left[ x\sec x cosec x + \log\tan x \right]\]

  Is there an error in this question or solution?

Video TutorialsVIEW ALL [1]

Solution ​Differentiate E Sin X + ( Tan X ) X ? Concept: Simple Problems on Applications of Derivatives.
S
View in app×