Share

Books Shortlist

# Solution for ​Differentiate E Sin X + ( Tan X ) X ? - CBSE (Commerce) Class 12 - Mathematics

ConceptSimple Problems on Applications of Derivatives

#### Question

Differentiate $e^{\sin x }+ \left( \tan x \right)^x$ ?

#### Solution

$\text{ Let y } = e^{\sin x} + \left( \tan x \right)^x$

$\Rightarrow y = e^{ \sin x } + e^{\log \left( \tan x \right)^x }$

$\Rightarrow y = e^{\sin x }+ e^{x\log\left( \tan x \right)}$

Differentiating with respect to x

$\frac{dy}{dx} = \frac{d}{dx}\left( e^{\sin x} \right) + \frac{d}{dx}\left\{ e^{x\log\left( \tan x \right)} \right\}$

$= e^{ \sin x } \frac{d}{dx}\left( \sin x \right) + e^{x\log\left( \tan x \right)} \frac{d}{dx}\left( x \log\tan x \right)$

$= e^{\sin x } \left( \cos x \right) + e^{\log \left( \tan x \right)^x }\left[ x\frac{d}{dx}\left( \log\tan x \right) + \log\tan x\frac{d}{dx}\left( x \right) \right]$

$= e^{\sin x} \left( \cos x \right) + \left( \tan x \right)^x \left[ \frac{x}{\tan x}\left( \sec^2 x \right) + \log\tan x \right]$

$= e^{\sin x } \left( \cos x \right) + \left( \tan x \right)^x \left[ x\sec x cosec x + \log\tan x \right]$

Is there an error in this question or solution?

#### Video TutorialsVIEW ALL [1]

Solution ​Differentiate E Sin X + ( Tan X ) X ? Concept: Simple Problems on Applications of Derivatives.
S