CBSE (Science) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for Differentiate Cos − 1 { Cos X + Sin X √ 2 } , − π 4 < X < π 4 ? - CBSE (Science) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?

Solution

\[\text{ Let, y } = \cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}\]

\[ y = \cos^{- 1} \left\{ \left( \frac{1}{\sqrt{2}} \right)\cos x + \left( \frac{1}{\sqrt{2}} \right)\sin x \right\}\]

\[ y = \cos^{- 1} \left\{ \cos\frac{\pi}{4}\cos x + \sin\frac{\pi}{4}\sin x \right\}\]

\[ y = \cos^{- 1} \left\{ \cos\left( \frac{\pi}{4} - x \right) \right\} . . . \left( i \right)\]

\[\text{ Here }, - \frac{\pi}{4} < x < \frac{\pi}{4}\]

\[ \Rightarrow \frac{\pi}{4} > - x > - \frac{\pi}{4}\]

\[ \Rightarrow - \frac{\pi}{4} < - x < \frac{\pi}{4}\]

\[ \Rightarrow \left( - \frac{\pi}{4} + \frac{\pi}{4} \right) < \left( - x + \frac{\pi}{4} \right) < \left( \frac{\pi}{4} + \frac{\pi}{4} \right)\]

\[ \Rightarrow 0 < \left( \frac{\pi}{4} - x \right) < \frac{\pi}{2}\]

\[\text{ So, from equation } \left( i \right), \]

\[ y = \frac{\pi}{4} - x \left[ \text{ Since }, \cos^{- 1} \left( \cos\theta \right) = \theta, if \theta \in \left[ 0, \pi \right] \right]\]

\[\text{ Differentiating it with respect to x }, \]

\[\frac{d y}{d x} = 0 - 1\]

\[\frac{d y}{d x} = - 1\]

  Is there an error in this question or solution?

Video TutorialsVIEW ALL [1]

Solution Differentiate Cos − 1 { Cos X + Sin X √ 2 } , − π 4 < X < π 4 ? Concept: Simple Problems on Applications of Derivatives.
S
View in app×