CBSE (Science) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for Differentiate Cos − 1 ( 1 − X 2 N 1 + X 2 N ) , < X < ∞ ? - CBSE (Science) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?

Solution

\[\text{Let, y } = \cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right)\]

\[\text{ Put } x^n = \tan\theta\]

\[ \therefore y = \cos^{- 1} \left[ \frac{1 - \left( x^n \right)^2}{1 + \left( x^n \right)^2} \right]\]

\[ \Rightarrow y = \cos^{- 1} \left( \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \right) \]

\[ \Rightarrow y = \cos^{- 1} \left( \cos 2\theta \right) . . . \left( i \right)\]

\[\text{ Here }, 0 < x < \infty \]

\[ \Rightarrow 0 < x^n < \infty \]

\[ \Rightarrow 0 < \tan\theta < \infty \]

\[ \Rightarrow 0 < \theta < \frac{\pi}{2}\]

\[ \Rightarrow 0 < 2\theta < \pi\]

\[\text{ So, from equation } \left( i \right), \]

\[ y = 2\theta \left[ \text{ Since }, \cos^{- 1} \left( \cos \theta \right) = \theta, if \theta \in \left[ 0, \pi \right] \right]\]

\[ \Rightarrow y = 2 \tan^{- 1} \left( x^n \right)\]

Differentiate it with respect to x using chain rule,

\[\frac{d y}{d x} = 2\left[ \frac{1}{1 + \left( x^n \right)^2} \right]\frac{d}{dx}\left( x^n \right)\]

\[ \Rightarrow \frac{d y}{d x} = \frac{2}{1 + x^{2n}} \times \left( n x^{n - 1} \right)\]

\[ \therefore \frac{d y}{d x} = \frac{2n x^{n - 1}}{1 + x^{2n}}\]

  Is there an error in this question or solution?

Video TutorialsVIEW ALL [1]

Solution for question: Differentiate Cos − 1 ( 1 − X 2 N 1 + X 2 N ) , < X < ∞ ? concept: Simple Problems on Applications of Derivatives. For the courses CBSE (Science), PUC Karnataka Science, CBSE (Arts), CBSE (Commerce)
S
View in app×