CBSE (Science) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for Differentiate Cos − 1 { √ 1 + X 2 } , − 1 < X < 1 ? - CBSE (Science) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?

Solution

\[\text{ Let, y  }= \cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}\]

\[\text{Put x } = \cos2\theta\]

\[ y = \cos^{- 1} \left\{ \sqrt{\frac{1 + \cos 2\theta}{2}} \right\}\]

\[ y = \cos^{- 1} \left\{ \sqrt{\frac{2 \cos^2 \theta}{2}} \right\}\]

\[ y = \cos^{- 1} \left( \cos\theta \right) . . . \left( i \right)\]

\[\text{ Here }, - 1 < x < 1\]

\[ \Rightarrow - 1 < \cos2\theta < 1\]

\[ \Rightarrow 0 < 2\theta < \pi\]

\[ \Rightarrow 0 < \theta < \frac{\pi}{2}\]

\[\text{ So, from equation } \left( i \right)\]

\[ y = \theta \left[ \text{ since } , \cos^{- 1} \left( cos\theta \right) = \theta, if\theta \in \left[ 0, \pi \right] \right]\]

\[ \Rightarrow y = \frac{1}{2} \cos^{- 1} x \left[ \text{ Since } , x = \cos2\theta \right]\]

\[\text{ Differentiating it with respect to x }, \]

\[\frac{d y}{d x} = - \frac{1}{2\sqrt{1 - x^2}}\]

  Is there an error in this question or solution?

Video TutorialsVIEW ALL [1]

Solution for question: Differentiate Cos − 1 { √ 1 + X 2 } , − 1 < X < 1 ? concept: Simple Problems on Applications of Derivatives. For the courses CBSE (Science), CBSE (Commerce), PUC Karnataka Science, CBSE (Arts)
S
View in app×