Advertisement Remove all ads

Show that vector area of a parallelogram ABCD is ACBD12(AC¯×BD¯) where AC and BD are its diagonals. - Mathematics and Statistics

Advertisement Remove all ads
Advertisement Remove all ads
Sum

Show that vector area of a parallelogram ABCD is `1/2 (bar"AC" xx bar"BD")` where AC and BD are its diagonals.

Advertisement Remove all ads

Solution

Let ABCD be a parallelogram.

Then `bar"AC" = bar"AB" + bar"BC"` and

`bar"BD" = bar"BA" + bar"AD" = - bar"AB" + bar"BC"  ....[because bar"BC" = bar"AD"]`

`= bar"BC" - bar"AB"`

∴ `bar"AC" xx bar"BD" = (bar"AB" + bar"BC") xx (bar"BC" - bar"AB")`

`= bar"AB" xx (bar"BC" - bar"AB") + bar"BC" xx (bar"BC" - bar"AB")`

`= bar"AB" xx bar"BC" - bar"AB" xx bar"AB" + bar"BC" xx bar"BC" - bar"BC" xx bar"AB"`

`= bar"AB" xx bar"BC" + bar"AB" xx bar"BC"`

....`[bar"AB" xx bar"AB" = bar"BC" xx bar"BC" = bar"0"  "and"  - bar"BC" xx bar"AB" = bar"AB" xx bar"BC"]`

∴ `bar"AC" xx bar"BD" = 2(bar"AB" xx bar"BC")`

= 2 (vector area of parallelogram ABCD)

∴ vector area of parallelogram ABCD `= 1/2(bar"AC" xx bar"BD")`

Concept: Vector Product of Vectors (Cross)
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×