Advertisement

Show that Triangleabc, Where A(–2, 0), B(2, 0), C(0, 2) and δPqr Where P(–4, 0), Q(4, 0), R(0, 2) Are Similar Triangles - Mathematics

Question

Show that ΔABC, where A(–2, 0), B(2, 0), C(0, 2) and ΔPQR where P(–4, 0), Q(4, 0), R(0, 2) are similar triangles

Solution

In ΔABC, the coordinates of the vertices are A(–2, 0), B(2, 0), C(0, 2). 

`AB = sqrt((2+2)^2 + (0 - 0)^2) = 4`

`BC = sqrt((0 - 2)^2 + (2 - 0)^2) =sqrt8 = 2sqrt2`

`CA = sqrt((0 + 2)^2 + (2 - 0)^2) = sqrt8 = 2sqrt2)`

In ΔPQR, the coordinates of the vertices are P(–4, 0), Q(4, 0), R(0, 4).

`PQ = sqrt((4+4)^2 + (0-0)^2) = 8`

`QR = sqrt((0 - 4)^2 + (4 - 0)^2) =     4sqrt2`

`PR= sqrt((0 + 4)^2 + (4 - 0)^2) = 4sqrt2`

Now, for ΔABC and ΔPQR to be similar, the corresponding sides should be proportional

So, `(AB)/(PQ) = (BC)/(QR) = (CA)/(PR)`

`=> 4/8 = (2sqrt2)/(4sqrt2) = (2sqrt2)/(4sqrt2) = 1/2`

Thus, ΔABC is similar to ΔPQR

  Is there an error in this question or solution?
Advertisement
Advertisement
Show that Triangleabc, Where A(–2, 0), B(2, 0), C(0, 2) and δPqr Where P(–4, 0), Q(4, 0), R(0, 2) Are Similar Triangles Concept: Similarity of Triangles.
Advertisement
Share
Notifications

View all notifications
Login
Create free account


      Forgot password?
View in app×