Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum
Show that the sum of an AP whose first term is a, the second term b and the last term c, is equal to `((a + c)(b + c - 2a))/(2(b - a))`
Advertisement Remove all ads
Solution
Given that, the AP is a, b, , c
Here, first term = a, common difference = b – a
And last term, (l) = an = c
∵ an = l = a + (n – 1 )d
⇒ c = a + (n – 1)(b – a)
⇒ `(n - 1) = (c - a)/(b - a)`
`n = (c - a)/(b - a) + 1`
⇒ `n = (c - a + b - a)/(b - a)`
= `(c + b - 2a)/(b - a)` ......(i)
∴ Sum of an AP,
`S_n = n/2 [2a + (n - 1)d]`
= `((b + c - 2a))/(2(b - a)) [2a + {(b + c - 2a)/(b - a) - 1}(b - a)]`
= `((b + c - 2a))/(2(b - a))[2a + (c - a)/(b - a) * (b - a)]`
= `((b + c - 2a))/(2(b - a)) (2a + c - a)`
= `((b + c - 2a))/(2(b - a)) * (a + c)`
Hence proved.
Concept: Sum of First n Terms of an A.P.
Is there an error in this question or solution?