Show that the Relation R Defined by (A, B)R(C,D) ⇒ a + D = B + C  on the a X a , Where a = {1, 2,3,...,10} is an Equivalence Relation. - Mathematics

Advertisements
Advertisements
Sum

Show that the relation R defined by (a, b)R(c,d) ⇒ a + d = b + c   on the A x A  , where A =  {1, 2,3,...,10}  is an equivalence relation. Hence write the equivalence class [(3, 4)]; a, b, c,d ∈ A.

Advertisements

Solution

Here (a, b)R(c,d) ⇒ a + d = b + c on A x A, where A =  {1, 2,3,...,10} .

Reflexivity: Let (a, b) be an arbitrary element of A x A. Then, (a,b) ∈ A x A `forall` a, b ∈  A.


So, a + b = b + a 
⇒ (a,b) R (a,b).


Thus, (a,b) R (a,b) `forall` (a,b) ∈  A x A.
Hence R is reflexive.


Symmetry: Let (a,b), (c,d) ∈ A x A be such that (a,b) R (c,d).


Then, a + d = b + c 
⇒ c + b = d + a 
⇒ (c,d ) R (a,b).


Thus, (a,b) R (c,d)
⇒ (c,d) R (a,b) `forall` (a,b), (c,d) ∈  A x A.
Hence R is symmetric.


Transitivity: Let (a,b),(c,d),(e,f) ∈  A x A be such that (a,b) R (c,d) R (e,f).

Then, a + d = b + c and c + f = d + e
⇒ (a+d) + (c+f)
= (b + c) + (d+e)

⇒ a + f = b + e
⇒ (a, b) R (e,f).


That is (a,b) R (c,d) and (c,d) R (e,f)
⇒ (a,b) R (e,f) `forall` (a,b), (c,d), (e,f) ∈  A x A.

Hence R is transitive.

Since R is reflexive, symmetric and transitive so, R is an equivalence relation as well.

For the equivalence class of [(3, 4)], we need to find (a,b) s.t. (a,b) R (3,4)
⇒ a + 4 = b + 3
⇒ b - a = 1.

So, [(3,4)] = {(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,8),(8,9),(9,10)}.

  Is there an error in this question or solution?
2015-2016 (March) All India Set 1 E

RELATED QUESTIONS

Let A = {1, 2, 3,......, 9} and R be the relation in A × A defined by (a, b) R (c, d) if a + d = b + c for (a, b), (c, d) in A × A. Prove that R is an equivalence relation. Also, obtain the equivalence class [(2, 5)].


Show that the relation R in the set of real numbers, defined as R = {(a, b): a ≤ b2} is neither reflexive nor symmetric nor transitive.


Show that the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)} is symmetric but neither reflexive nor transitive.


Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.


Let R be the relation in the set {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Choose the correct answer.


The binary operation *: R x R → R is defined as a *b = 2a + b Find (2 * 3)*4


Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive :

R = {(x, y) : x and y live in the same locality}


Test whether the following relation R2 is (i) reflexive (ii) symmetric and (iii) transitive:

R2 on Z defined by (a, b) ∈ R2 ⇔ |a – b| ≤ 5


Prove that every identity relation on a set is reflexive, but the converse is not necessarily true.


If = {1, 2, 3, 4} define relations on A which have properties of being reflexive, symmetric and transitive ?


Let R be a relation defined on the set of natural numbers N as
R = {(xy) : x N, 2x + y = 41}
Find the domain and range of R. Also, verify whether R is (i) reflexive, (ii) symmetric (iii) transitive.


An integer m is said to be related to another integer n if m is a multiple of n. Check if the relation is symmetric, reflexive and transitive.


Give an example of a relation which is symmetric and transitive but not reflexive?


Defines a relation on N :

xy is square of an integer, x, y ∈ N

Determine the above relation is reflexive, symmetric and transitive.


Let R be a relation on the set A of ordered pair of integers defined by (x, y) R (u, v) if xv = yu. Show that R is an equivalence relation.


Let R be the relation defined on the set A = {1, 2, 3, 4, 5, 6, 7} by R = {(a, b) : both a and b are either odd or even}. Show that R is an equivalence relation. Further, show that all the elements of the subset {1, 3, 5, 7} are related to each other and all the elements of the subset {2, 4, 6} are related to each other, but no element of the subset {1, 3, 5, 7} is related to any element of the subset {2, 4, 6}.


Write the domain of the relation R defined on the set Z of integers as follows:-
(a, b) ∈ R ⇔ a2 + b2 = 25


Write the identity relation on set A = {a, b, c}.


If R = {(x, y) : x + 2y = 8} is a relation on N by, then write the range of R.


Let the relation R be defined on N by aRb iff 2a + 3b = 30. Then write R as a set of ordered pairs


The relation 'R' in N × N such that
(a, b) R (c, d) ⇔ a + d = b + c is ______________ .


If A = {1, 2, 3}, B = {1, 4, 6, 9} and R is a relation from A to B defined by 'x is greater than y'. The range of R is ______________ .


Let R = {(a, a), (b, b), (c, c), (a, b)} be a relation on set A = a, b, c. Then, R is _______________ .


Let R be the relation on the set A = {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Then, _____________________ .


S is a relation over the set R of all real numbers and it is given by (a, b) ∈ S ⇔ ab ≥ 0. Then, S is _______________ .


If A = {a, b, c}, B = (x , y} find A × B.


If A = {a, b, c}, B = (x , y} find B × A.


If A = {a, b, c}, B = (x , y} find A × A.


If A = {a, b, c}, B = (x , y} find B × B.


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∩ C).


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6} Find (A × B) ∩ (A × C).


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∪ C).


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find (A × B) ∪ (A × C).


Let A = {6, 8} and B = {1, 3, 5}.
Let R = {(a, b)/a∈ A, b∈ B, a – b is an even number}. Show that R is an empty relation from A to B.


Write the relation in the Roster form and hence find its domain and range :
R1 = {(a, a2) / a is prime number less than 15}


Write the relation in the Roster form and hence find its domain and range:

R2 = `{("a", 1/"a")  "/"  0 < "a" ≤ 5, "a" ∈ "N"}`


R = {(a, b) / b = a + 1, a ∈ Z, 0 < a < 5}. Find the Range of R.


In the set of natural numbers N, define a relation R as follows: ∀ n, m ∈ N, nRm if on division by 5 each of the integers n and m leaves the remainder less than 5, i.e. one of the numbers 0, 1, 2, 3 and 4. Show that R is equivalence relation. Also, obtain the pairwise disjoint subsets determined by R


For real numbers x and y, define xRy if and only if x – y + `sqrt(2)` is an irrational number. Then the relation R is ______.


Consider the set A = {1, 2, 3} and R be the smallest equivalence relation on A, then R = ______


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
a mapping from A to B which is not injective


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
a mapping from B to A


Let R = {(3, 1), (1, 3), (3, 3)} be a relation defined on the set A = {1, 2, 3}. Then R is symmetric, transitive but not reflexive.


Let R be the relation on N defined as by x + 2 y = 8 The domain of R is ____________.


Let us define a relation R in R as aRb if a ≥ b. Then R is ____________.


Let A = {1, 2, 3} and consider the relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}. Then R is ____________.


Let R be a relation on the set N of natural numbers denoted by nRm ⇔ n is a factor of m (i.e. n | m). Then, R is ____________.


Let S = {1, 2, 3, 4, 5} and let A = S x S. Define the relation R on A as follows:
(a, b) R (c, d) iff ad = cb. Then, R is ____________.


If A = {1,2,3}, B = {4,6,9} and R is a relation from A to B defined by ‘x is smaller than y’. The range of R is ____________.


If A is a finite set consisting of n elements, then the number of reflexive relations on A is


The relation > (greater than) on the set of real numbers is


Which one of the following relations on the set of real numbers R is an equivalence relation?


On the set N of all natural numbers, define the relation R by a R b, if GCD of a and b is 2. Then, R is


In a group of 52 persons, 16 drink tea but not coffee, while 33 drink tea. How many persons drink coffee but not tea?


The number of surjective functions from A to B where A = {1, 2, 3, 4} and B = {a, b} is


There are 600 student in a school. If 400 of them can speak Telugu, 300 can speak Hindi, then the number of students who can speak both Telugu and Hindi is:


A relation 'R' in a set 'A' is called reflexive, if


Which of the following is/are example of symmetric


If f(x + 2a) = f(x – 2a), then f(x) is:


Given a non-empty set X, define the relation R in P(X) as follows:

For A, B ∈ P(X), (4, B) ∈ R iff A ⊂ B. Prove that R is reflexive, transitive and not symmetric.


Let a set A = A1 ∪ A2 ∪ ... ∪ Ak, where Ai ∩ Aj = Φ for i ≠ j, 1 ≤ i, j ≤ k. Define the relation R from A to A by R = {(x, y): y ∈ Ai if and only if x ∈ Ai, 1 ≤ i ≤ k}. Then, R is ______.


Let f(x)= ax2 + bx + c be such that f(1) = 3, f(–2) = λ and f(3) = 4. If f(0) + f(1) + f(–2) + f(3) = 14, then λ is equal to ______.


Let R1 and R2 be two relations defined as follows :

R1 = {(a, b) ∈ R2 : a2 + b2 ∈ Q} and

R2 = {(a, b) ∈ R2 : a2 + b2 ∉ Q}, where Q is the set of all rational numbers. Then ______


Let R = {(x, y) : x, y ∈ N and x2 – 4xy + 3y2 = 0}, where N is the set of all natural numbers. Then the relation R is ______.


lf A = {x ∈ z+ : x < 10 and x is a multiple of 3 or 4}, where z+ is the set of positive integers, then the total number of symmetric relations on A is ______.


Let A = {1, 2, 3, 4} and let R = {(2, 2), (3, 3), (4, 4), (1, 2)} be a relation on A. Then R is ______.


Read the following passage:

An organization conducted bike race under two different categories – Boys and Girls. There were 28 participants in all. Among all of them, finally three from category 1 and two from category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project.
Let B = {b1, b2, b3} and G = {g1, g2}, where B represents the set of Boys selected and G the set of Girls selected for the final race.

Based on the above information, answer the following questions:

  1. How many relations are possible from B to G? (1)
  2. Among all the possible relations from B to G, how many functions can be formed from B to G? (1)
  3. Let R : B `rightarrow` B be defined by R = {(x, y) : x and y are students of the same sex}. Check if R is an equivalence relation. (2)
    OR
    A function f : B `rightarrow` G be defined by f = {(b1, g1), (b2, g2), (b3, g1)}. Check if f is bijective. Justify your answer. (2)

A relation R on (1, 2, 3) is given by R = {(1, 1), (2, 2), (1, 2), (3, 3), (2, 3)}. Then the relation R is ______.


Share
Notifications



      Forgot password?
Use app×