Show that the Function F Given by F ( X ) = ⎧ ⎨ ⎩ E 1 X − 1 E 1 X + 1 If X ≠ 0 − 1 If X = 0 is Discontinuous at X = 0 - Mathematics

Advertisements
Advertisements
Sum

Show that the function f given by:

`f(x)={((e^(1/x)-1)/(e^(1/x)+1),"if",x,!=,0),(-1,"if",x,=,0):}"`

is discontinuous at x = 0.

Advertisements

Solution

`f(x)={((e^(1/x)-1)/(e^(1/x)+1),"if",x,!=,0),(-1,"if",x,=,0):}"`

LHL: `lim_(x → 0^-) (e^(1/x) - 1)/(e^(1/x) + 1)`

= `lim_(h → 0) (e^(-1/h) - 1)/(e^(-1/h) + 1) = (0 - 1)/(0 + 1) = - 1`

RHL: `lim_(h → 0) (e^(1/h) - 1)/(e^(1/h) + 1)`

= `lim_(h → 0) (1 - e^(-1/h))/(1 + e^(-1/h)) = 1`

LHL ≠  RHL
∴ f(x) is discontinuous at x = 0.

  Is there an error in this question or solution?
2015-2016 (March) All India Set 1 E

RELATED QUESTIONS

Discuss the continuity of the following functions. If the function have a removable discontinuity, redefine the function so as to remove the discontinuity

`f(x)=(4^x-e^x)/(6^x-1)`  for x ≠ 0

         `=log(2/3) ` for x=0


Show that the function `f(x)=|x-3|,x in R` is continuous but not differentiable at x = 3.


Find the values of p and q for which

f(x) = `{((1-sin^3x)/(3cos^2x),`

is continuous at x = π/2.


Determine the value of 'k' for which the follwoing function is continuous at x = 3

`f(x) = {(((x+3)^2-36)/(x-3),  x != 3), (k,  x =3):}`


Is the function f defined by f(x)= `{(x, if x<=1),(5, if x > 1):}`  continuous at x = 0? At x = 1? At x = 2?


Find all points of discontinuity of f, where f is defined by `f(x) = {(|x|+3, if x<= -3),(-2x, if -3 < x < 3),(6x + 2, if x >= 3):}`


Find all points of discontinuity of f, where f is defined by `f (x) = {(x/|x|, if x<0),(-1, if x >= 0):}`


Find all points of discontinuity of f, where f is defined by `f (x) = {(x+1, if x>=1),(x^2+1, if x < 1):}`


Find all points of discontinuity of f, where f is defined by `f(x) = {(x^3 - 3, if x <= 2),(x^2 + 1, if x > 2):}`


Find all points of discontinuity of f, where f is defined by `f (x) = {(x^10 - 1, if x<=1),(x^2, if x > 1):}`


Show that the function defined by  g(x) = x = [x] is discontinuous at all integral points. Here [x] denotes the greatest integer less than or equal to x.


Find the value of constant ‘k’ so that the function f (x) defined as

f(x) = `{((x^2 -2x-3)/(x+1), x != -1),(k, x != -1):}`

is continous at x = -1


Show that the function f(x) = `{(x^2, x<=1),(1/2, x>1):}` is continuous at x = 1 but not differentiable.


Prove that the function 

\[f\left( x \right) = \begin{cases}\frac{x}{\left| x \right| + 2 x^2}, & x \neq 0 \\ k , & x = 0\end{cases}\]  remains discontinuous at x = 0, regardless the choice of k.

For what value of λ is the function 
\[f\left( x \right) = \begin{cases}\lambda( x^2 - 2x), & \text{ if }  x \leq 0 \\ 4x + 1 , & \text{  if } x > 0\end{cases}\]continuous at x = 0? What about continuity at x = ± 1?


Find the relationship between 'a' and 'b' so that the function 'f' defined by 

\[f\left( x \right) = \begin{cases}ax + 1, & \text{ if }  x \leq 3 \\ bx + 3, & \text{ if } x > 3\end{cases}\] is continuous at x = 3.

 


Find the points of discontinuity, if any, of the following functions: 

\[f\left( x \right) = \begin{cases}\left| x \right| + 3 , & \text{ if } x \leq - 3 \\ - 2x , & \text { if }  - 3 < x < 3 \\ 6x + 2 , & \text{ if }  x > 3\end{cases}\]

Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}2x , & \text{ if }  & x < 0 \\ 0 , & \text{ if }  & 0 \leq x \leq 1 \\ 4x , & \text{ if }  & x > 1\end{cases}\]


Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}x^{10} - 1, & \text{ if }  x \leq 1 \\ x^2 , & \text{ if } x > 1\end{cases}\]


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}- 2 , & \text{ if }& x \leq - 1 \\ 2x , & \text{ if } & - 1 < x < 1 \\ 2 , & \text{ if }  & x \geq 1\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou: 

\[f\left( x \right) = \begin{cases}\frac{k \cos x}{\pi - 2x} , & x < \frac{\pi}{2} \\ 3 , & x = \frac{\pi}{2} \\ \frac{3 \tan 2x}{2x - \pi}, & x > \frac{\pi}{2}\end{cases}\]

The function f (x) = tan x is discontinuous on the set

 


Discuss the Continuity of the F(X) at the Indicated Points : F(X) = | X − 1 | + | X + 1 | at X = −1, 1.


Find the point of discontinuity, if any, of the following function: \[f\left( x \right) = \begin{cases}\sin x - \cos x , & \text{ if }  x \neq 0 \\ - 1 , & \text{ if }  x = 0\end{cases}\]


 Show that the function `f(x) = |x-4|, x ∈ R` is continuous, but not diffrent at x = 4. 


Prove that `1/2 "cos"^(-1) ((1-"x")/(1+"x")) = "tan"^-1 sqrt"x"`


If f(x) = `{{:("a"x + 1,  "if"  x ≥ 1),(x + 2,  "if"  x < 1):}` is continuous, then a should be equal to ______.


Find all points of discontinuity of the function f(t) = `1/("t"^2 + "t" - 2)`, where t = `1/(x - 1)`


The number of discontinuous functions y(x) on [-2, 2] satisfying x2 + y2 = 4 is ____________.


`lim_("x"-> 0) sqrt(1/2 (1 - "cos"  2"x"))/"x"` is equal to


The domain of the function f(x) = `""^(24 - x)C_(3x - 1) + ""^(40 - 6x)C_(8x - 10)` is


The function `f(x) = (x^2 - 25)/(x + 5)` is continuous at x =


The function f defined by `f(x) = {{:(x, "if"  x ≤ 1),(5, "if"  x > 1):}` discontinuous at x equal to


The point of discountinuity of the function `f(x) = {{:(2x + 3",", x ≤ 2),(2x - 3",", x > 2):}` is are


How many point of discontinuity for the following function in its. domain.

`f(x) = {{:(x/|x|",", if  x < 0),(-1",", if x ≥ 0):}`


How many point of discontinuity for the following function for x ∈ R

`f(x) = {{:(x + 1",", if x ≥ 1),(x^2 + 1",", if x < 1):}`


`f(x) = {{:(x^3 - 3",", if x < 2),(x^2 + 1",", if x > 2):}` has how many point of discontinuity


`f(x) = {{:(x^10 - 1",", if x ≤ 1),(x^2",", if x > 1):}` is discontinuous at


Sin |x| is a continuous function for


Let a, b ∈ R, b ≠ 0. Define a function

F(x) = `{{:(asin  π/2(x - 1)",", "for"  x ≤ 0),((tan2x - sin2x)/(bx^3)",", "for" x > 0):}`

If f is continuous at x = 0, then 10 – ab is equal to ______.


If function f(x) = `{{:((asinx + btanx - 3x)/x^3,",", x ≠ 0),(0,",", x = 0):}` is continuous at x = 0 then (a2 + b2) is equal to ______.


If functions g and h are defined as

g(x) = `{{:(x^2 + 1, x∈Q),(px^2, x\cancel(∈)Q):}`

and h(x) = `{{:(px, x∈Q),(2x + q, x\cancel(∈)Q):}`

If (g + h)(x) is continuous at x = 1 and x = 3, then 3p + q is ______.


If f(x) = `{{:(cos ((π(sqrt(1 + x) - 1))/x)/x,",", x ≠ 0),(π/k,",", x = 0):}`

is continuous at x = 0, then k2 is equal to ______.


If f(x) = `{{:((log_(sin|x|) cos^2x)/(log_(sin|3x|) cos  x/2), |x| < π/3; x ≠ 0),(k, x = 0):}`, then value of k for which f(x) is continuous at x = 0 is ______.


Let α ∈ R be such that the function

f(x) = `{{:((cos^-1(1 - {x}^2)sin^-1(1 - {x}))/({x} - {x}^3)",", x ≠ 0),(α",", x = 0):}`

is continuous at x = 0, where {x} = x – [x], [x] is the greatest integer less than or equal to x.


If the function f defined as f(x) = `1/x - (k - 1)/(e^(2x) - 1)` x ≠ 0, is continuous at x = 0, then the ordered pair (k, f(0)) is equal to ______.


Find the value(s) of 'λ' if the function

f(x) = `{{:((sin^2 λx)/x^2",", if x ≠ 0  "is continuous at"  x = 0.),(1",", if x = 0):}`


Find the value of k for which the function f given as

f(x) =`{{:((1 - cosx)/(2x^2)",", if x ≠ 0),(       k",", if x = 0 ):}` 

is continuous at x = 0.


If f(x) = `{{:((kx)/|x|"," if x < 0),(  3","   if x ≥ 0):}` is continuous at x = 0, then the value of k is ______.


Share
Notifications



      Forgot password?
Use app×