Show that the Sum of (M + N)Th And (M – N)Th Terms of an A.P. is Equal to Twice The Mth Term. - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.

Advertisement Remove all ads

Solution

Let a and d be the first term and the common difference of the A.P. respectively.

It is known that the kth term of an A. P. is given by

ak = a + (k –1) d

∴ am + n = a + (m + n –1) d

am – n = a + (m – n –1) d

am a + (m –1) d

∴ am + n + am – n = a + (m + n –1) d + a + (m – n –1) d

= 2a + (m + n –1 + m – n –1) d

= 2a + (2m – 2) d

= 2a + 2 (m – 1) d

=2 [a + (m – 1) d]

= 2am

Thus, the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.

Concept: Arithmetic Progression (A.P.)
  Is there an error in this question or solution?
Chapter 9: Sequences and Series - Miscellaneous Exercise [Page 199]

APPEARS IN

NCERT Class 11 Mathematics
Chapter 9 Sequences and Series
Miscellaneous Exercise | Q 1 | Page 199

Video TutorialsVIEW ALL [1]

Share
Notifications

View all notifications


      Forgot password?
View in app×